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Curating good training data is critical to the
performance of LLMSs.

Latest open-source LLMs are trained on 30+ trillion tokens of data
(Qwen 3)

Every frontier lab has data teams constantly working on designing new
training datasets

“To train the best language model, the curation of a large, high-quality

training dataset is paramount. In line with our design principles, we
iInvested heavily in pretraining data.” - Llama3 blog

How did we get here?
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Kaplan et. al., 2020. Scaling Laws for Neural Language Modéels.
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.
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LLMs and Data: quantity is not everything
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Takeaway: today, people widely accept that having good LLM training data Is just as
important as having a lot of it

v _Sorcher et al., 2022. Beyond neural scaling laws: beating power law scaling via data pruning.
Abbas et al., 2023. SemDeDup: Data-efficient learning at web-scale through semantic deduplication.
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A bit about me

LLM data researcher, final-year PhD student at Stanford advised by
Christopher Re (I am not a roboticist :))

Developed algorithms for data labelling, data curriculum, data mixing,
synthetic data

Partnered with Snorkel Al, Together Al, Al2, involved in creation of
several LLMs and their training datasets (e.g., DCLM)



Outline

e The LLM data development pipeline
o What makes good data?
o  How do you create a good dataset”?
e Deep dive into data mixing
o Key development: Mixing laws
o (Case study: two methods that utilise mixing laws

o |mplications of Mixing Laws: improving understanding

9



The LLM Data Development
Pipeline



What makes a good LLM training dataset?

Quantity (# of tokens)
Quality (sample-level properties)

Composition (dataset-level properties)
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What makes a good LLM training dataset?
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What makes a good LLM training dataset?

Quantity (# of tokens)
Quality (sample-level properties)

Composition (dataset-level properties)

FineWeb-Edu Score: 2/5

Well, these are still some difficult questions to answer with pin-point
accuracy, and at this point | don't believe anyone has the exact answer to all
3 of these questions. What | offer below is a mix of what | Think, What |
know and what Appears to be.... Anyone currently attempting to answer
these questions with some type of

FineWeb-Edu Score: 4/5

A vaccine is a biological preparation that improves immunity to a particular
disease. A vaccine typically contains an agent that resembles a disease-
causing microorganism, and is often made from weakened or killed forms of
the microbe, its toxins or one of its surface proteins.
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Figure 10: Comparing FineWeb datasets to other
public datasets. Base FineWeb shows strong perfor-
mance, with the educational subset (FineWeb-Edu)
surpassing all other public datasets and further en-
hancing the aggregate score by approximately 2%.

Penedo et al., 2024. The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale



What makes a good LLM training dataset?

Quantity (# of tokens)
Quality (sample-level properties)

Composition (dataset-level properties)

History TAUdiO_ t A\(;\?ﬁt?r:gic Legal
Science ranscrip - .
“Jience | . — Tl ez LLM that can do many things:
Fashion Entertainment Politics Life [lIJ)Ctu € Y
& Beauty c at? Content FAQ . d _t
reative Listin 4
Software ertlng 9 ! News About ; Summarlse Ocumen S
Dev. e ) " ocs (Org.) (Org.)
00 - nowiedge .
" Adult Religion : P
Hard Dinin Article
ardware Sports & < News Article Listicle ' ' ‘o erte COde
Fitness
Home & , :
Travel  fiopbies ~ Games Tutorial 1,ng, Spam Nonition solve math problems
gﬂg&cfss& QA Comment User About . .
Literature Healh  (art& Section Review (Pers ) = chat with users in many languages
_ , Personal y . i . .
Crime  Education & o0 coea Blog # make scientific discoveries?
Industrial & Law Jobs '

Figure 1: We construct topic domains (left) and format domains (right) to organize pre-training corpora. The areas
visualize the number of tokens per domain in a cleaned pre-training corpus based on CommonCrawl. See Appendix A for

detailed definitions of the categories. We provide an interactive explorer of the domains at weborganizer.allefy ai. Wettig et al., 2025.0rganize the Web: Constructing Domains Enhances Pre-Training Data Curation



How to create a good LLM dataset

Acquire data Transform data

Quantity T Quality T Composition 1



How to create a good LLM dataset

Source 1
Acquire data faamd Transform data
Source 2
. | ——
Acquire data faamd Transform data Mix data P ——
N—
Final dataset
Source 3

Acquire data faamd Transform data
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Data acquisition: @ — X

From the web
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Synthetically Generated

Cosmopedia: how to create
large-scale synthetic data for
pre-training

Published March 20, 2024

Update on GitHub
+4N LoubnaBenAllal Anton Lozhkov @ Daniel van Strien
) 5y loubnabnl anton-1 » ¥ davanstrien

In this blog post, we outline the challenges and solutions involved in generating a synthetic
dataset with billions of tokens to replicate Phi-1.5, leading to the creation of Cosmopedia.

Synthetic data has become a central topic in Machine Learning. It refers to artificially

generated data, for instance by large language models (LLMs), to mimic real-world data.

1/




Data transformation: X — X’

Filtering

Figure 4: Construction of DCLM-BASELINE from DCLM-
POOL. Before this pipeline, we extracted DCLM-Pool from
Common Crawl with resiliparse. Percentages are based on
the total number of original documents.

18 Li et al., 2024. DataComp-LM: In search of the next generation of training sets for language models.
Maini et al., 2024. Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling.



Data transformation: X — X’

Filtering
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Figure 4: Construction of DCLM-BASELINE from DCLM-
POOL. Before this pipeline, we extracted DCLM-Pool from
Common Crawl with resiliparse. Percentages are based on
the total number of original documents.

19 Li et al., 2024. DataComp-LM: In search of the next generation of training sets for language models.
Maini et al., 2024. Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling.



Data transformation: X — X’

Filtering

[oduoreaton 9]

Figure 4: Construction of DCLM-BASELINE from DCLM-
POOL. Before this pipeline, we extracted DCLM-Pool from
Common Crawl with resiliparse. Percentages are based on
the total number of original documents.

20 Li et al., 2024. DataComp-LM: In search of the next generation of training sets for language models.
Maini et al., 2024. Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling.



Data transformation: X — X’

Filtering

Figure 4: Construction of DCLM-BASELINE from DCLM-
POOL. Before this pipeline, we extracted DCLM-Pool from
Common Crawl with resiliparse. Percentages are based on
the total number of original documents.

01 Li et al., 2024. DataComp-LM: In search of the next generation of training sets for language models.
Maini et al., 2024. Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling.
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Data transformation: X — X’

Filtering

Figure 4: Construction of DCLM-BASELINE from DCLM-
POOL. Before this pipeline, we extracted DCLM-Pool from
Common Crawl with resiliparse. Percentages are based on
the total number of original documents.
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Figure 1: (a) WRAP Recipe: We prompt an off-the-shelf instruction-tuned model to rephrase
articles on the web, and pre-train an LLM on a mixture of real and synthetic data. (b)
Zero-shot performance of GPT 1.3B models trained on combinations of C4 and synthetic
variations. Each step corresponds to a batch of 1M samples. (c) Weighted average perplexity
over 21 sub-domains of the Pile for varying model sizes and amount of pre-training data.

Li et al., 2024. DataComp-LM: In search of the next generation of training sets for language models.
Maini et al., 2024. Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling.



Data mixing: X, ..., X, = Xz,

Goal: given m data domains, how should we combine the domains to produce
a good model?

To be discussed in the next part of the tutorial!

8%
17% ©® General Knowledge
Math/Reasoning
@® Code
® Multilingual

Llama-3 mix
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Deep dive: Data Mixing



What is Mixing?

LLM that can do many things:

7 summarise documents

@® General Knowledge
Math/Reasoning

@® Code

@ Multilingual

3 write code

solve math problems

»= chat with users In many languages

# make scientific discoveries?

25



What is Mixing?

LLM that can do many things:

- summarise documents

@® General Knowledge
Math/Reasoning

@® Code

® Multilingual

3 write code

& solve math problems

v~ chat with users in many languages

# make scientific discoveries?

Goal: given m domains, in what ratios p should we sample the
domains to produce a model that excels at all desired capabillities?”

20



Why mix?

Reality:
e Models are trained on multiple datasets.

e Mixing is inevitable: even simple concatenation of datasets is a form of
mixing.

Mixing lets you:
e (Control the training distribution with a low-dimensional knob, p.

e Navigate trade-offs among desired model capabilities

27



Mixing works! A “good mix” can dramatically improve performance across tasks.

Validation Losses Across Tasks
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Why Is mixing challenging?
Naive approach: brute-force search/manual tuning to find a good mix = costly!

e Usedin GLAM (2021), Tulu3 (2024), OpenVLA (2024)
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Mixing settings

Static mixing Dynamic mixing
Train entire Train model on Train model on Train model on
model on p p'!for s steps p2for s steps p3for s steps

Training Duration 0 S 2S  Training Duration

30



Mixing settings

Static mixing Dynamic mixing
Train entire Train model on Train model on Train model on
model on p p'!for s steps p2for s steps p3for s steps

Training Duration 0 S 2S  Training Duration

Simple; prepare mix & hit “run”
Reusable (e.g., “OXE Magic Soup”)

X Can leave performance on the table

31



Mixing settings

Static mixing

Train entire
model on p

Simple; prepare mix & hit “run”
Reusable (e.g., “OXE Magic Soup”)

X Can leave performance on the table

Training Duration

32

Dynamic mixing

Train model on Train model on Train model on
p'!for s steps p2for s steps p3for s steps

0 S 2S Training Duration

Adapts mix to current model checkpoint

Strong evidence that order matters (example: learning 1 digit
addition before 2 digit addition)

X Implementation issues (incompatible with many trainers)

X Difficult to reuse a dynamic mix



Formal problem (static)

Given: m training domains D, ..., D, , token budget N



Formal problem (static)

o Given: m training domains D, ..., D, , token budget N

o Choose: data mix p & Am -1 , then create D,
D.

l

using IV X p, tokens per domain
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Formal problem (static)

Given: m training domains D, ..., D, , token budget N

Choose: datamix p € Am -1 , then create D, ,
D.

l

using IV X p, tokens per domain

Evaluate: Train LM(p), compute validation loss f,(LM(p)) for n val datasets

Val datasets: held-out split on training domains (n=m), or OOD/downstream
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Formal problem (static)

Given: m training domains D, ..., D, , token budget N

Choose: datamix p € Am -1 , then create D, ,
D.

l

using IV X p, tokens per domain

Evaluate: Train LM(p), compute validation loss f,(LM(p)) for n val datasets

Val datasets: held-out split on training domains (n=m), or OOD/downstream

Static Data Mixing Problem:

L I %
Minimize e A n-1— Z J:(LM(p))
=1

Goal: compute near-optimal p* in a way that’s more efficient than search

36



Formal problem (dynamic)

Train model on Train model on Train model on Train model on

p' for N/T steps  p2for N/T steps  p3for N/T steps pT for N/T steps

. S

t=1 t=2 =3 t=T Training Duration

Choose: Split training into T stages according to the dynamic mix
p=Ip'.p*....p"] (where eachp’ € A" ')

37



Formal problem (dynamic)

Train model on Train model on Train model on Train model on

p' for N/T steps  p2for N/T steps  p3for N/T steps pT for N/T steps

. S @ Q@

t=1 t=2 =3 t=T Training Duration

e Choose: Split training into | stages according to the dynamic mix
p=Ip'.p*....p"] (where eachp’ € A" ')

e Dynamic Data Mixing Problem:

L | %
minimize), ¢ AT Z J(LM(p))
i=1

Goal: compute near-optimal p™ in a way that’s more efficient than search

33



Many methods...

Efficient Online Data Mixing For Language Model
Pre-Training

Alon Albalak’ Liangming Pan' Colin Raffel”’  William Yang Wang'
"University of California, Santa Barbara
“University of Toronto
*Vector Institute

DoReMi: Optimizing Data Mixtures Speeds Up Language
Model Pretraining

" . . =12 . p . . . . pu
Sang Michael Xie*'?, Hieu Pham', Xuanyi Dong', Nan Du', Hanxiao Liu’, Yifeng Lu’,
5 ) 8 8
Percy Liang?, Quoc V. Le!, Tengyu Ma?, and Adams Wei Yu'

'Google DeepMind
Stanford University

Data Mixing Laws: Optimizing Data Mixtures by Predicting
Language Modeling Performance

Jiasheng Ye'* Peiju Liu'* Tianxiang Sun' Yunhua Zhou’ Jun Zhan' Xipeng Qiu'!

OPTIMIZING PRETRAINING DATA MIXTURES
WITH LLM-ESTIMATED UTILITY

William Held® 7  Bhargavi Paranjape” Punit Singh Koura”
Mike Lewis” Frank Zhang” Todor Mihaylov*
#Meta AI  ?Stanford University ?Georgia Institute of Technology

#¢ PIKE: Adaptive Data Mixing for Large-Scale
Multi-Task Learning Under Low Gradient Conflicts DOGE *

REGMIX: Data Mixture as Regression for
Language Model Pre-training

Qian Liu'", Xiaosen Zheng”*, Niklas Muennighoff’, Guangtao Zeng', Longxu Dou'
Tianyu Pang', Jing Jiang”, Min Lin'
ISea AlLab *SMU “*Contextual Al “*SUTD
liuqian@sea.com; xszheng.2020@phdcs.smu.edu.sg

ADAPTIVE DATA OPTIMIZATION:
DYNAMIC SAMPLE SELECTION WITH SCALING LAWS

Yiding Jiang'* Allan Zhou'*  Zhili Feng' Sadhika Malladi® J. Zico Kolter'
Carnegie Mellon University' Stanford University* Princeton University®
yvidngji@cs.cmu.edu, ayzl@cs.stanford.edu

Skill-it! A Data-Driven Skills Framework for Understanding and

Training Language Models

Mayee F. Chen"' Nicholas Roberts’ Kush Bhatia' Jue Wang® Ce Zhang™*

Frederic Sala’ Christopher Ré'

Qa NVIDIA. 2025-4-18

CLIMB: CLustering-based Iterative Data Mixture
Bootstrapping for Language Model Pre-training

Shizhe Diao, Yu Yang', Yonggan Fu?, Xin Dong, Dan Su, Markus Kliegl, Zijia Chen, Peter Belcak,
Yoshi Suhara, Hongxu Yin, Mostofa Patwary, Yingyan (Celine) Lin?, Jan Kautz, Pavlo Molchanov

: Domain Reweighting with Generalization Estimation

Zeman Li’?* Yuan Deng? Peilin Zhong® Meisam Razaviyayn'? Vahab Mirrokni?
!University of Southern California  ?Google Research
{zemanli,razaviya}@usc.edu
{dengyuan,peilinz,mirrokni}@google.com

Simin Fan' Matteo Pagliardini' Martin Jaggi '
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Numerous techniques:
bandits, distributionally
robust optimization, multi-
task learning, portfolio
optimization, ...

Which one to use? What
are they really doing?



Key Insight: mixing laws




Key Insight: mixing laws

There is a structured relationship between the data mix p and
the performance metrics f.(LM(p)).

41




Key Insight: mixing laws

There is a structured relationship between the data mix p and
the performance metrics f.(LM(p)).

Takeaway: Aim to understand the relationship between
performance and data, then exploit this understanding to optimize

the data mix!

42



Key Insight: mixing laws

The relationship between the mix p and f,(LM(p)) can be modelled by a

mixing law:

f(LM(p)) ~ bo(-A

p) + ¢

A, €R™ b,c,eR Vi e [n]

43

Chen et al., 2024. Aioli: A Unified Optimization Framework for Language Model Data Mixing



Key Insight: mixing laws

The relationship between the mix p and f,(LM(p)) can be modelled by a
mixing law:

f(LM(p)) =~ bo(—A'p)+c; A, €R™ b,c,€R Vi€ [n]

Monotonic + linear in mix

44 Chen et al., 2024. Aioli: A Unified Optimization Framework for Language Model Data Mixing



Key Insight: mixing laws

The relationship between the mix p and f,(LM(p)) can be modelled by a
mixing law:

f(LM(p)) =~ bo(—A'p)+c; A, €R™ b,c,€R Vi€ [n]

Monotonic + linear in mix
Interpretation:

e Small/big change in p = small/big change in performance

e Each domain linearly contributes Aj, a “score” for how much domain
] Impacts validation dataset |

45 Chen et al., 2024. Aioli: A Unified Optimization Framework for Language Model Data Mixing



Case study: two methods that
utilise mixing laws




Static setting: Data Mixing Laws (Ye et al., 2024)

JLM(p)) = exp(—=A4; p) + ¢,

47 Ye etal., 2024. Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance



Static setting: Data Mixing Laws (Ye et al., 2024)

JLM(p)) ~ exp(=A; p) +¢;

Log-linear static mixing law on Arxiv/StackExchange
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R2 of static mixing law on SlimPajama (7 domains): 0.997

48 Ye et al., 2024. Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance



Static Mixing Law: Method

1. Explore 2. Fit 3. Optimize

49 Ye et al., 2024. Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance



Static Mixing Law: Method

1. Explore 2. Fit 3. Optimize

P Vi O\
‘.—»@—»w loss 1 = 1.20

eq%—»wl loss1=1.13

"q%—»wl loss | = 1.48

/ 50 Yeetal., 2024. Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance




Static Mixing Law: Method

1. Explore 2. Fit 3. Optimize

/ P Vi \ Use (o, yi) to fit parameters of mixing law

F(LM(p)):= exp(=A] p) + ¢,
—»@—Wal loss |1 = 1.20

Log-linear static mixing law on Arxiv/StackExchange

—_
(=]
(=]
ol

10—1 i

—»@—»w loss 1 =1.13

Log (Loss - ¢) on arxiv
—_
<

iog (Loss - ¢) on stackexchange

—_

00 02 04 06 08 00 02 04 06 08 1.0
Proportion of arxiv Proportion of stackexchange

—> —>\/al loss |1 = 1.48

/ 51 Yeetal., 2024. Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance




Static Mixing Law: Method

1. Explore 2. Fit 3. Optimize

1 & -
/ o, Vi \ Use (p, yi) to fit parameters of mixing law minimize,,c N Z f{(LM(p))
=1

F(LM(p)):= exp(=A] p) + ¢,
—»@—Wal loss |1 = 1.20

Log-linear static mixing law on Arxiv/StackExchange
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Static Mixing Law: Results

Test set perplexity (lower = better)
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Figure 8: The validation perplexity on the Pile validation set for 1B models trained on the
default mixture and the optimized mixture of RedPajama for 100B tokens. Our optimized
mixture achieves the performance of the default mixture only using 0.73 of the original
number of training steps and eventually achieves a performance comparable to a default
mixture trained with 1.48 times more tokens (estimated by the scaling law of training steps,
shown as the dashed line). The specific mixture proportions are in the right table.

53 Yeetal., 2024. Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance



Dynamic setting: Aioli (Chen et al., 2024)

fiH @AM (p) ~ fi(LM(p) — A, p'

54 Chen et al., 2024. Aioli: A Unified Optimization Framework for Language Model Data Mixin



Dynamic setting: Aioli (Chen et al., 2024)

fiH @AM (p) ~ fi(LM(p) — A, p'

Linear dynamic mixing law on Arxiv/StackExchange
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Dynamic Mixing Law: method
| = | = = f— —p




Dynamic Mixing Law: method
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Dynamic Mixing Law: method
| = | = = f— —p
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Dynamic Mixing Law: method
| = =

| o}
——

1. Explore

3. Optimize
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Dynamic Mixing Method: Results

Dynamic mixing improves over static mixing

Perplexity reduction from applying dynamic mixing (Aioli) starting from static mix (DML)
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Implications of mixing laws:
Improving understanding



Understanding existing methods

e Many mixing methods share the same meta-procedure: explore, fit,
and optimize.

e May use different mixing laws implicitly

Method A, from [ Y (LM(p)) ~ fI(LM(p)) — A, p'

DoReMi (Xie et al., 2023) | A;;, = min{f{(LM(p)) — f/ (LM(p,,)), 0}

DoGE (Fan et al., 2024) Al-j,t = (Vfl-t(LM (), Vf,-t(LM (p))
fiT(LM(lj)) _fil(LM(lj))

FILM(1))

Aioli (Chen et al., 2024) Learned from fitting data to dynamic mixing law

Skill-It (Chen et al., 2023) | A;;, = fi(LM(p)) -
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Understanding existing methods

Performance of existing method is correlated with the accuracy of its

iImplicit mixing law

Hardcoded params can produce inconsistent gains

Stratified loss - method loss

I I
© O
—_ —
&) -

Skill-It
DoReMi
DoGE
Aioli (ours)

0.0 02 04

0.6

0.8 1.0

Similarity between hardcoded and true mixing law parameters
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Understanding how models learn from data
fiLM(p)) ~ bio(—=A; p) + ¢,

Recall interpretation: each domain linearly contributes Aj;, a “score” for how

much domain j impacts validation dataset i. What does A € R actually
look like?

e |f Ais sparse and does not change over time, life is easy but boring

o4



Understanding how models learn from data

1. A matrix has asymmetries; not just one domain affecting one validation task

o A matrix using log-linear static mixing law on WebOrganizer (DCLM-baseline) domains
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Understanding how models learn from data

not just one domain affecting one validation task

1. A matrix has asymmetries
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Understanding how models learn from data

1. A matrix has asymmetries; not just one domain affecting one validation task

A matrix using log-linear static mixing law on WebOrganizer (DCLM-baseline) domains
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Understanding how models learn from data
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Understanding how models learn from data

not just one domain affecting one validation task

1. A matrix has asymmetries
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Understanding how models learn from data

1. A matrix has asymmetries; not just one domain affecting one validation task

A matrix using log-linear static mixing law on WebOrganizer (DCLM-baseline) domains
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Understanding how models learn from data
2. A matrix can change over time

A matrix (normalized) at step 2000 A matrix (normalized) at step 4000
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Summary

Data development pipeline: acquire (quantity), transform (quality), mix
(composition)

Mixing Is an critical step that allows us to align the data distribution
with a set of desired model capabilities, navigate tradeoffs

Key development: performance is often roughly linear in the data mix!

Mixing methods should exploit this structure to produce good mixes
efficiently.
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Looking forward

What should a domain be?
We can mix across any unit.
Domains as sources (conventional), vs. topics and formats

Can we use mixing to understand how to better acquire data”? What
can the A matrix tell us about what data the model needs the most?
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Thank you!

Some suggested readings:
e (General data development:
o The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
o BeyondWeb: Lessons from Scaling Synthetic Data for Trillion-scale Pretraining
o DataComp-LM: In search of the next generation of training sets for language models
o Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
e Mixing:
o Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance
o Aioli: A Unified Optimization Framework for Language Model Data Mixing
o QOrganize the Web: Constructing Domains Enhances Pre-Training Data Curation

Email: mfchen@stanford.edu
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