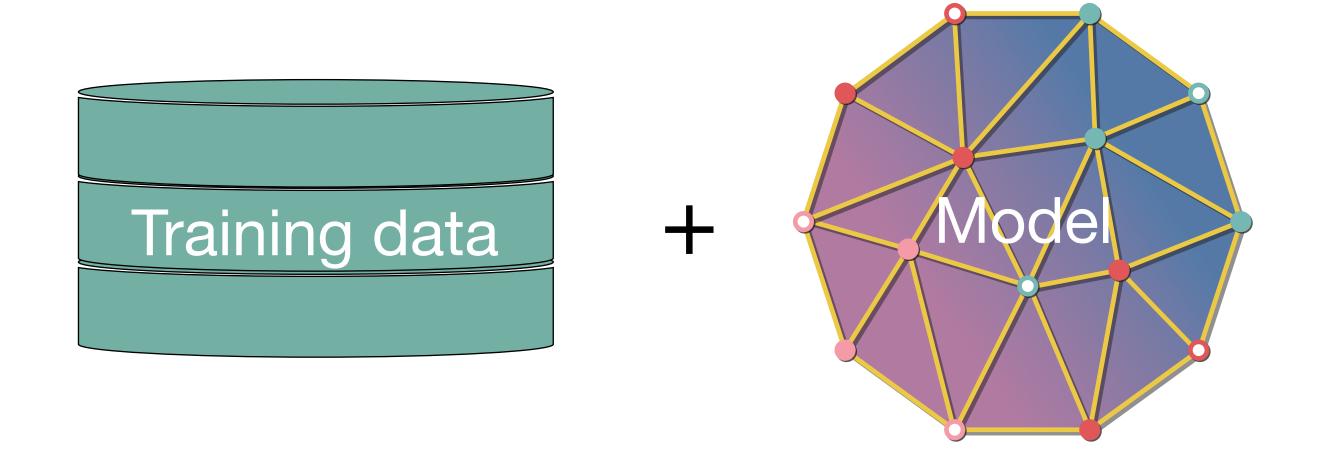
Tutorial: LLM Data Mixing

Mayee Chen, Stanford University mfchen@stanford.edu

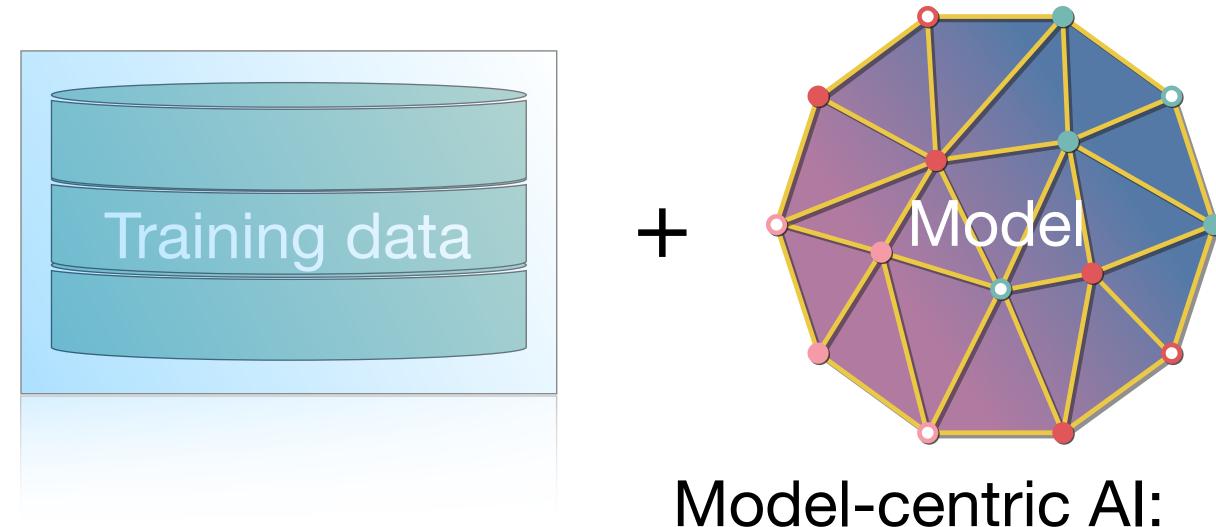
Curating good training data is critical to the performance of LLMs.

- Latest open-source LLMs are trained on 30+ trillion tokens of data (Qwen 3)
- Every frontier lab has data teams constantly working on designing new training datasets
- "To train the best language model, the curation of a large, high-quality training dataset is paramount. In line with our design principles, we invested heavily in pretraining data." - Llama3 blog
- How did we get here?

The role of Data in Al

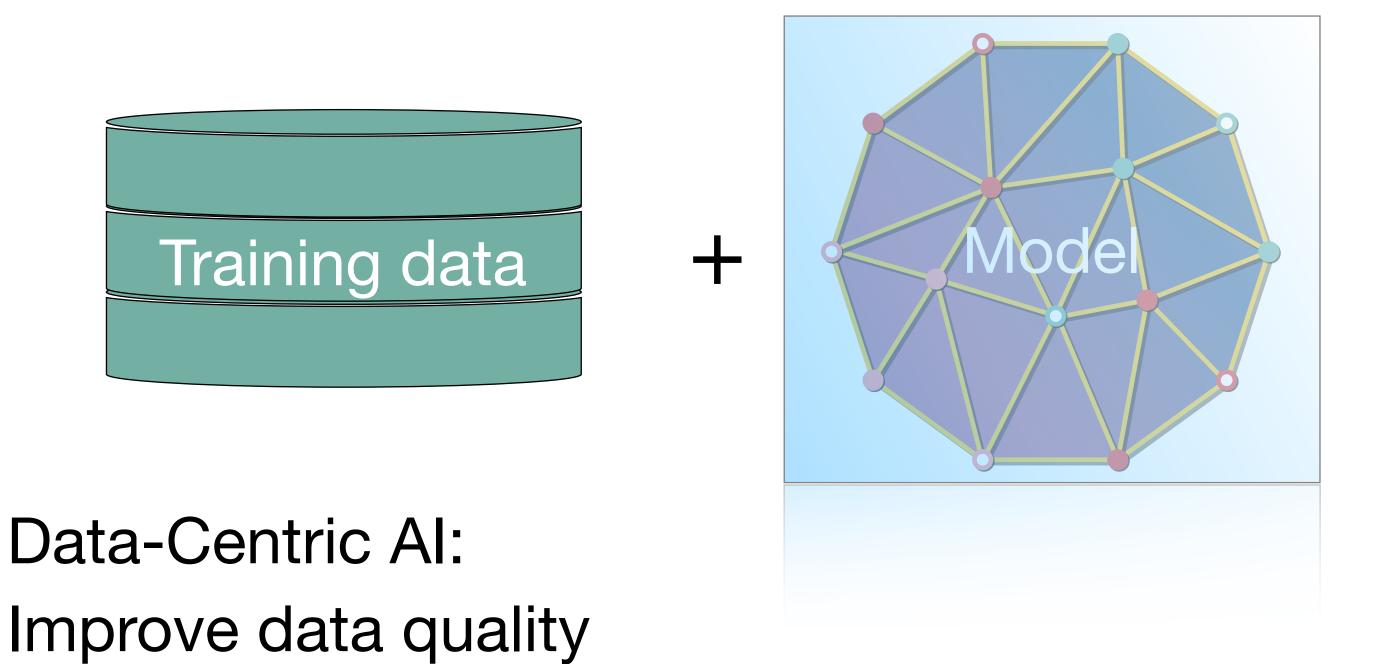


The role of Data in Al



Improve architectures, optimisers, training Hold data constant

The role of Data in Al



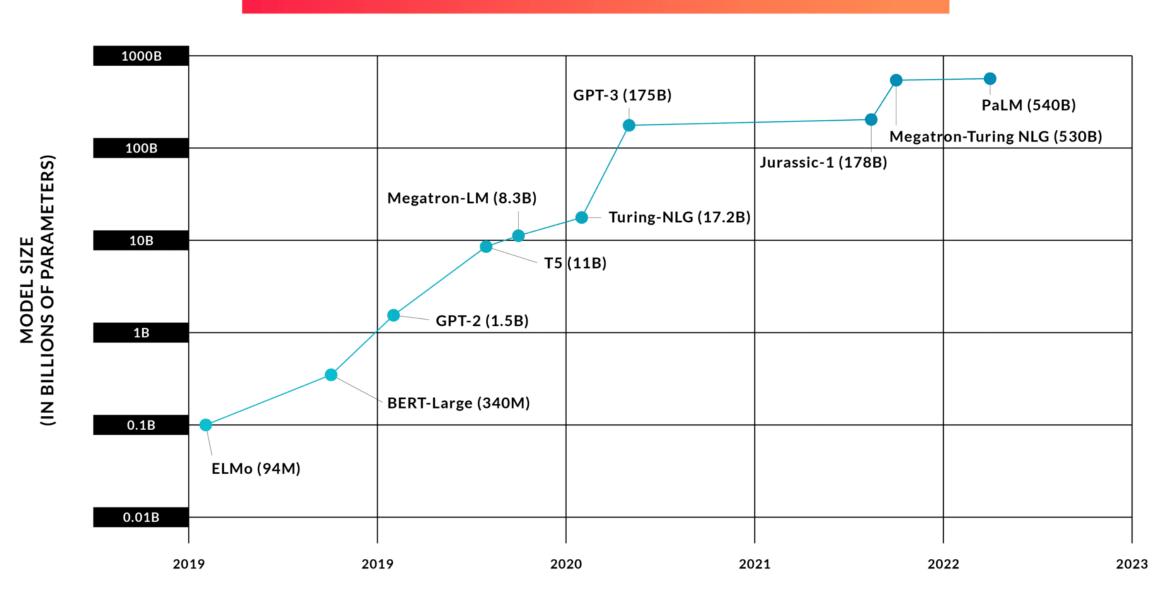
Late 2010s, early 2020s

Snorkel

Hold model/training constant

Early LLMs: scaling

Language Model Sizes Over Time



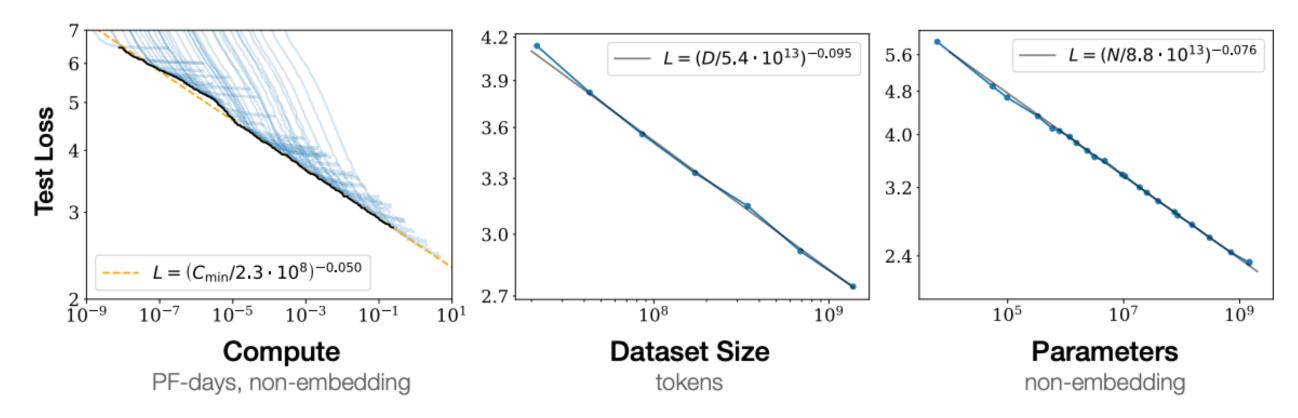
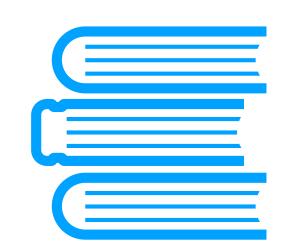
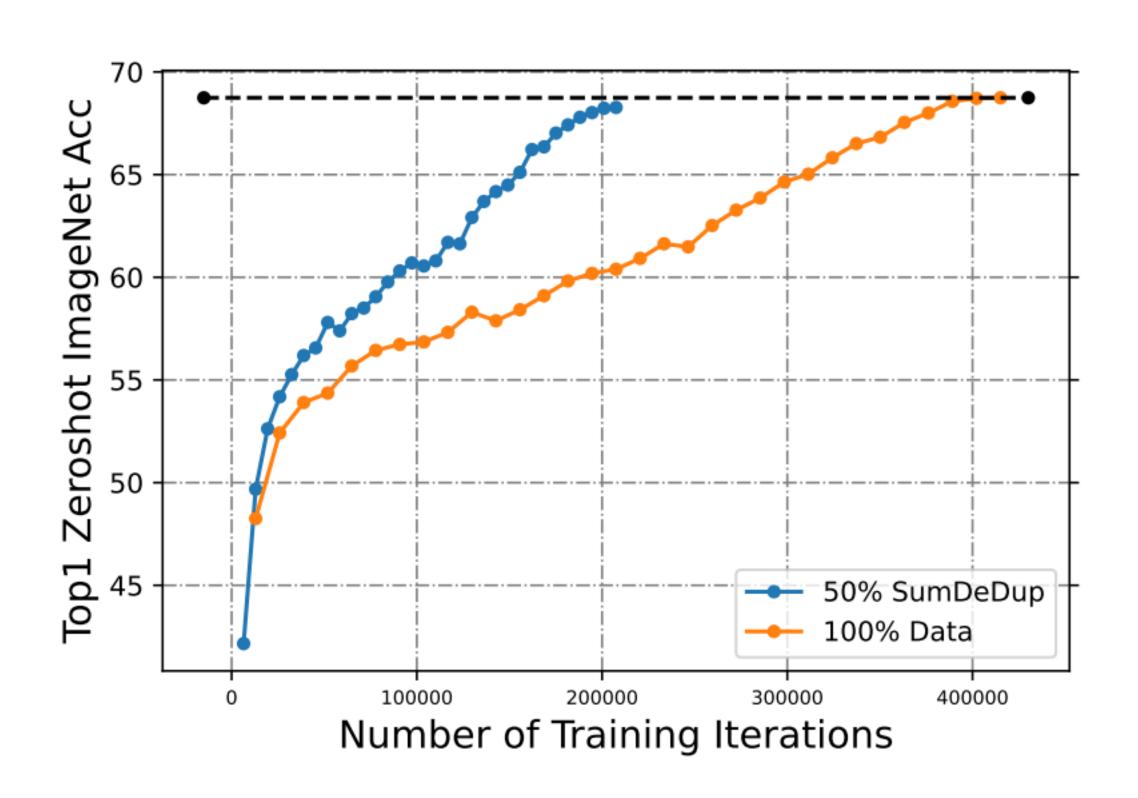


Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.



LLMs and Data: quantity is not everything





Takeaway: today, people widely accept that having good LLM training data is just as important as having a lot of it

A bit about me

- LLM data researcher, final-year PhD student at Stanford advised by Christopher Re (I am not a roboticist :))
- Developed algorithms for data labelling, data curriculum, data mixing, synthetic data
- Partnered with Snorkel AI, Together AI, AI2, involved in creation of several LLMs and their training datasets (e.g., DCLM)

Outline

- The LLM data development pipeline
 - What makes good data?
 - o How do you create a good dataset?
- Deep dive into data mixing
 - Key development: Mixing laws
 - Case study: two methods that utilise mixing laws
 - Implications of Mixing Laws: improving understanding

The LLM Data Development Pipeline

Quantity (# of tokens)

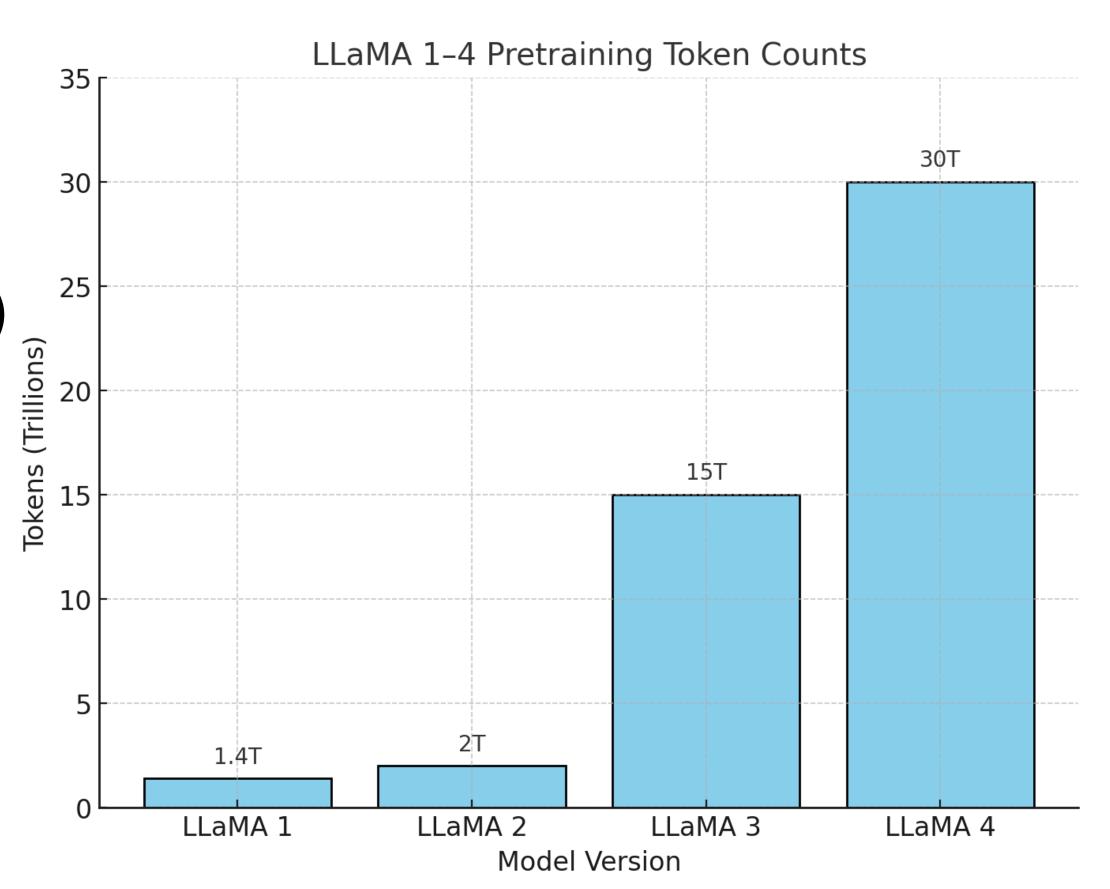
Quality (sample-level properties)

Composition (dataset-level properties)

Quantity (# of tokens)

Quality (sample-level properties)

Composition (dataset-level properties)



Quantity (# of tokens)

Quality (sample-level properties)

Composition (dataset-level properties)

FineWeb-Edu Score: 2/5

Well, these are still some difficult questions to answer with pin-point accuracy, and at this point I don't believe anyone has the exact answer to all 3 of these questions. What I offer below is a mix of what I Think, What I know and what Appears to be.... Anyone currently attempting to answer these questions with some type of

FineWeb-Edu Score: 4/5

A vaccine is a biological preparation that improves immunity to a particular disease. A vaccine typically contains an agent that resembles a disease-causing microorganism, and is often made from weakened or killed forms of the microbe, its toxins or one of its surface proteins.

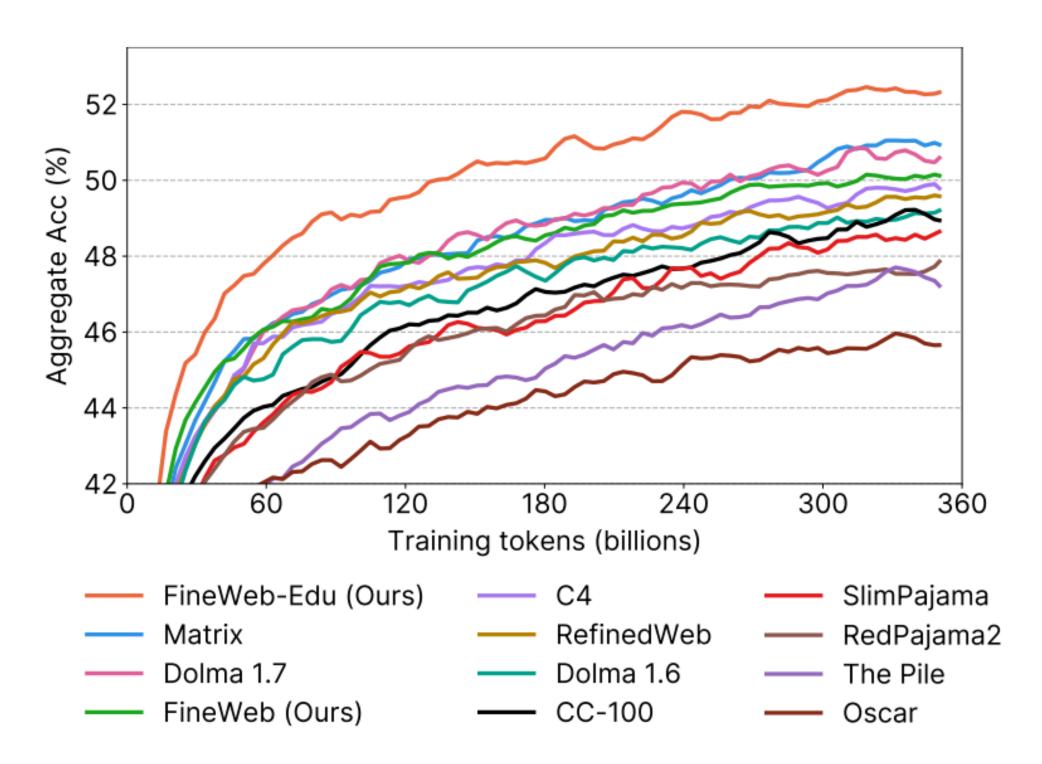
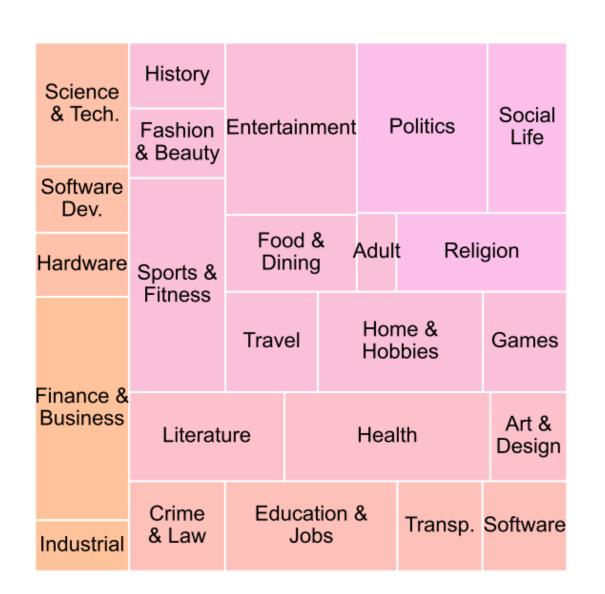


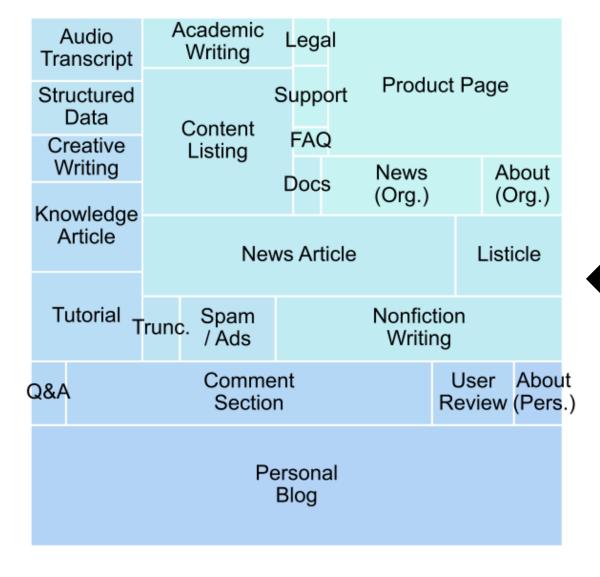
Figure 10: Comparing FineWeb datasets to other public datasets. Base FineWeb shows strong performance, with the educational subset (FineWeb-Edu) surpassing all other public datasets and further enhancing the aggregate score by approximately 2%.

Quantity (# of tokens)

Quality (sample-level properties)

Composition (dataset-level properties)





LLM that can do many things: summarise documents

12 solve math problems

mrite code

chat with users in many languages

make scientific discoveries?

Figure 1: We construct **topic domains** (left) and **format domains** (right) to organize pre-training corpora. The areas visualize the number of tokens per domain in a cleaned pre-training corpus based on CommonCrawl. See Appendix A for detailed definitions of the categories. We provide an interactive explorer of the domains at weborganizer.allepy.ai.

How to create a good LLM dataset

Acquire data

Quantity 1

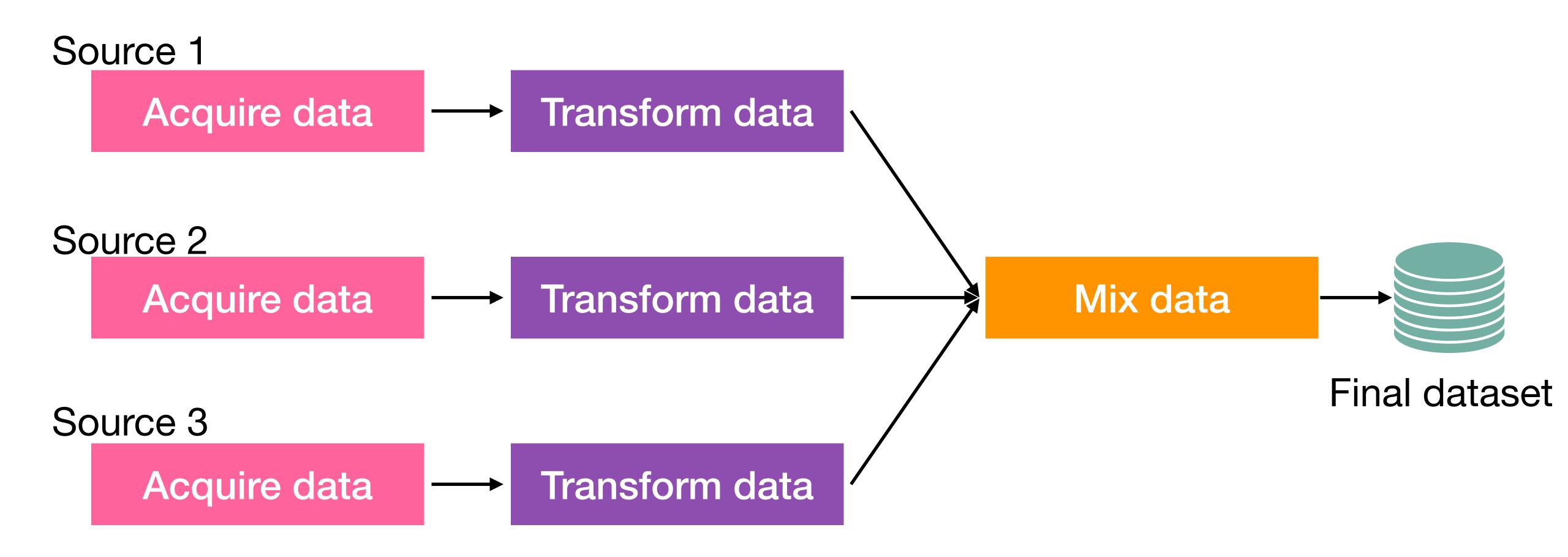
Transform data

Quality 1

Mix data

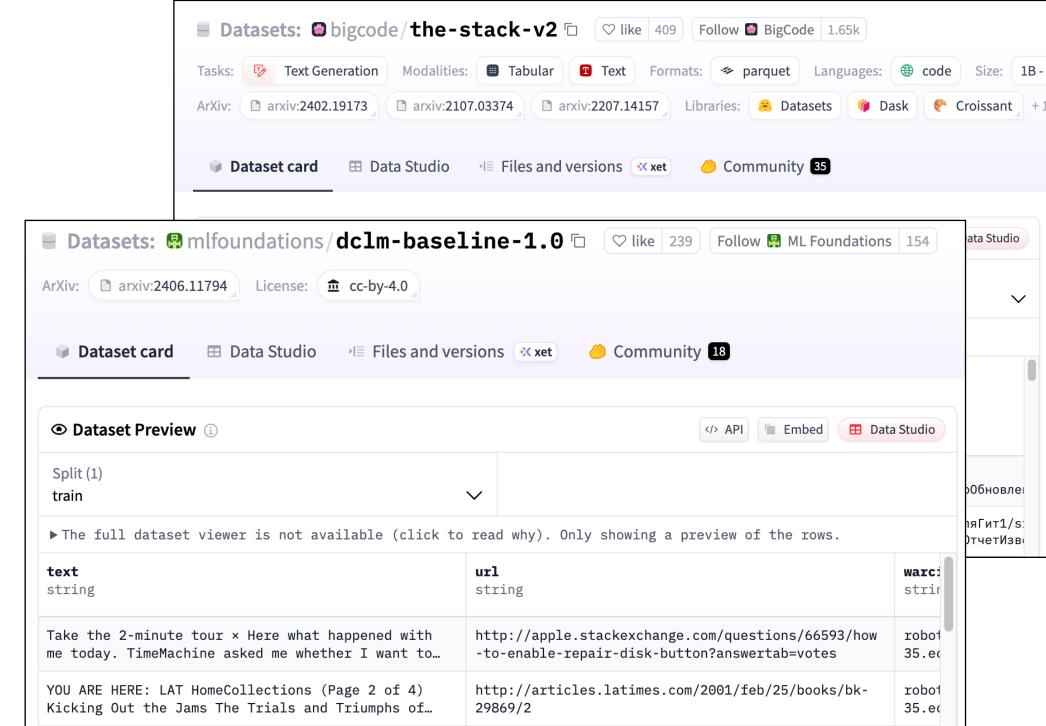
Composition 1

How to create a good LLM dataset

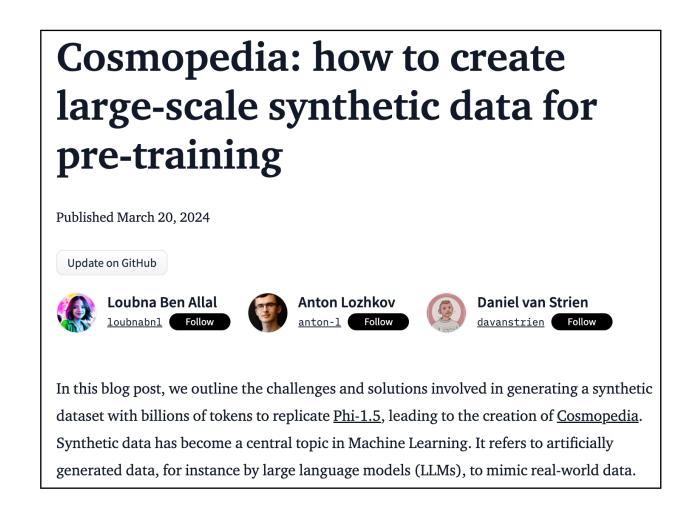


Data acquisition: $\emptyset \rightarrow X$

From the web

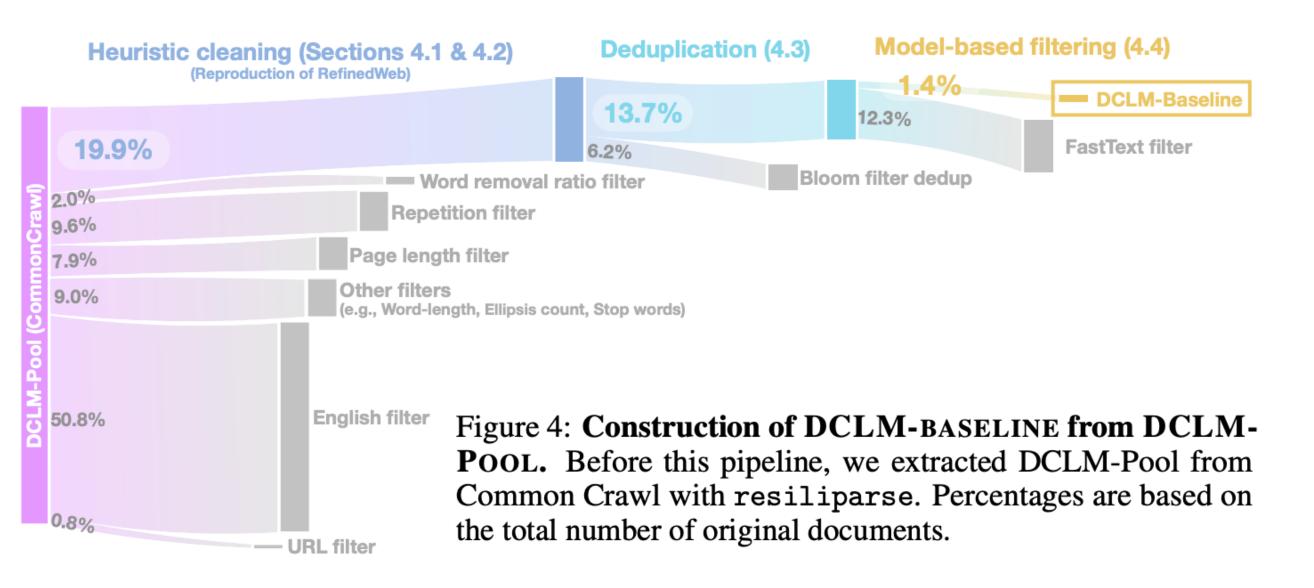


Synthetically Generated

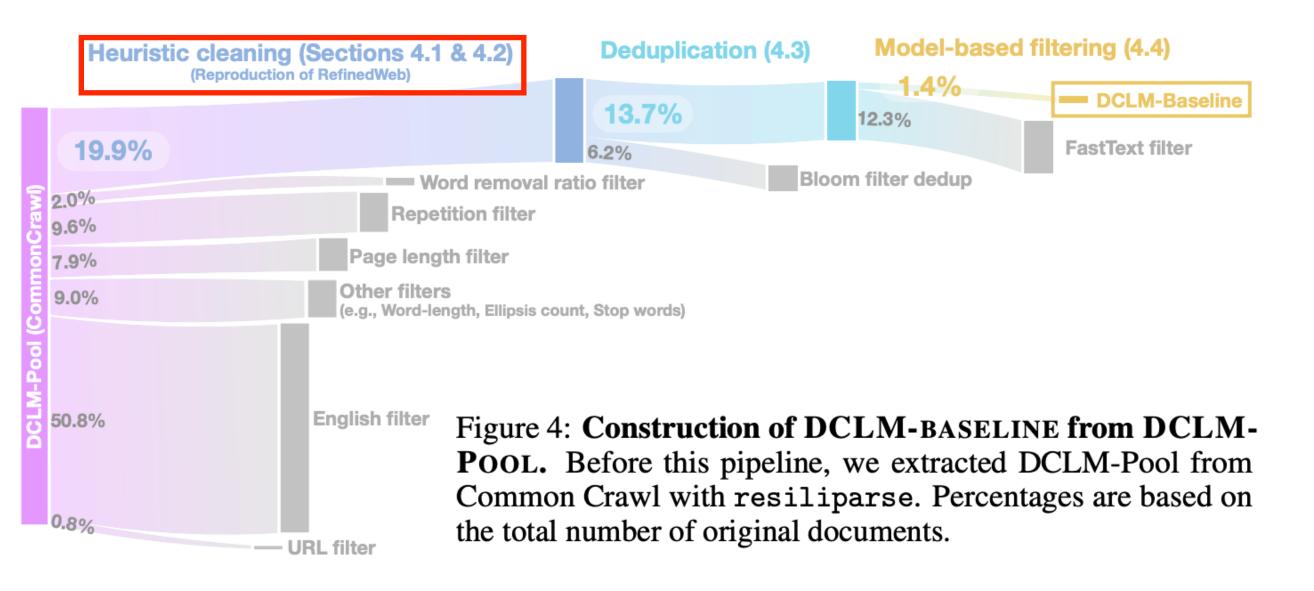


7

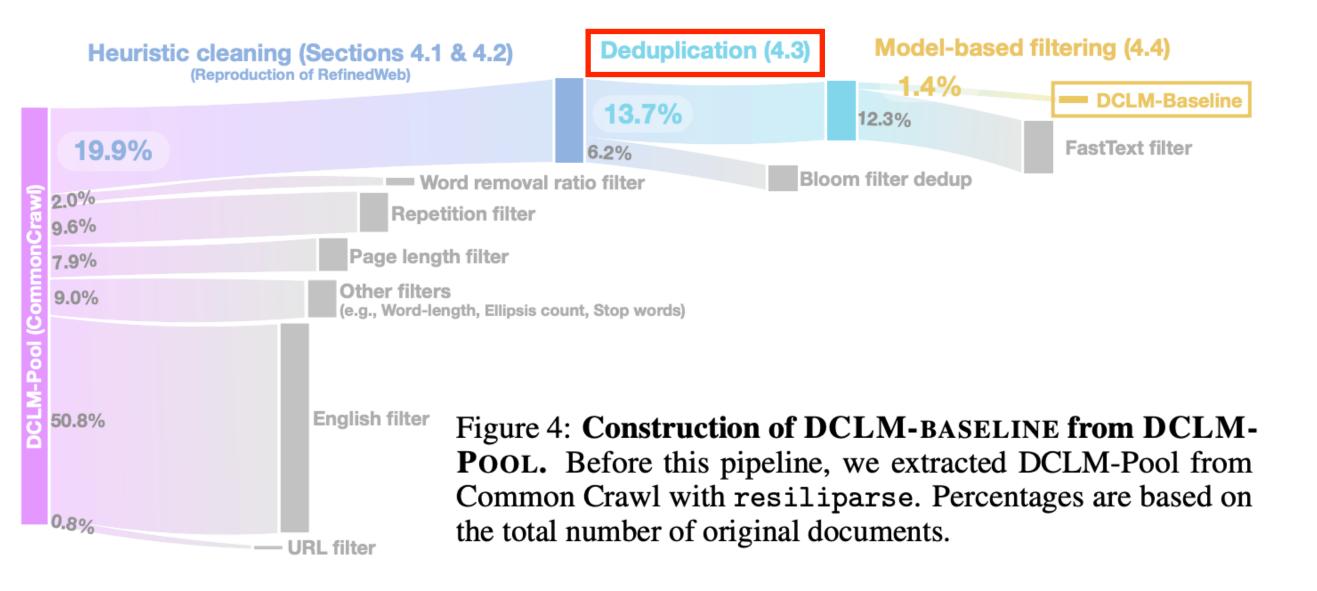
Data transformation: $X \rightarrow X'$



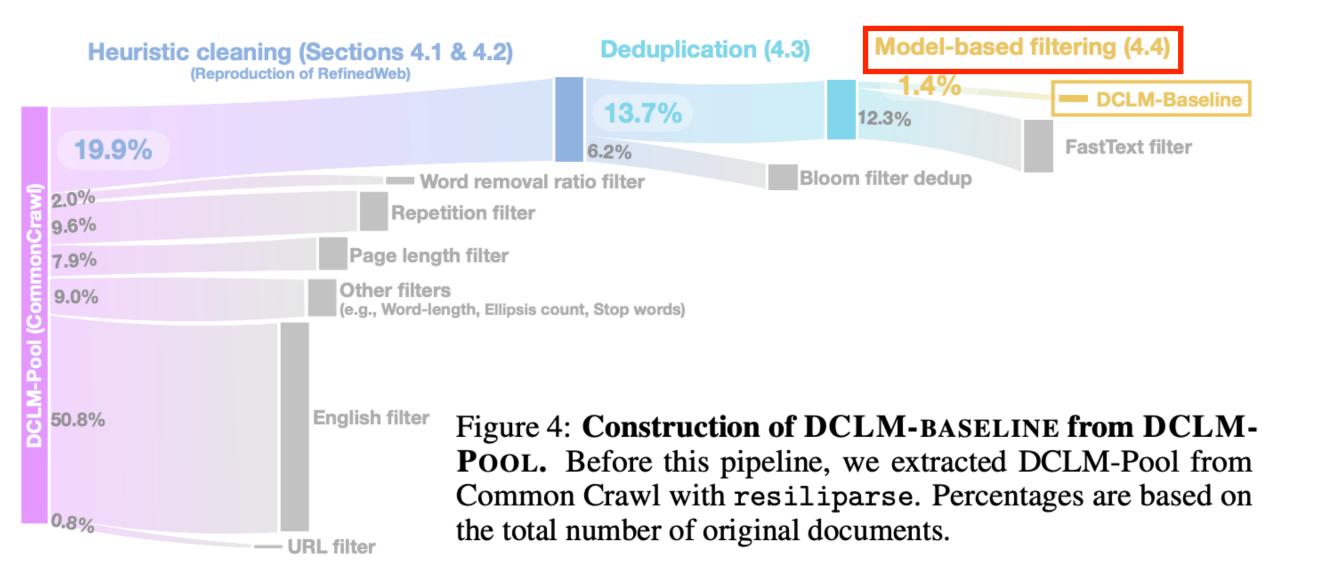
Data transformation: $X \rightarrow X'$



Data transformation: $X \to X'$

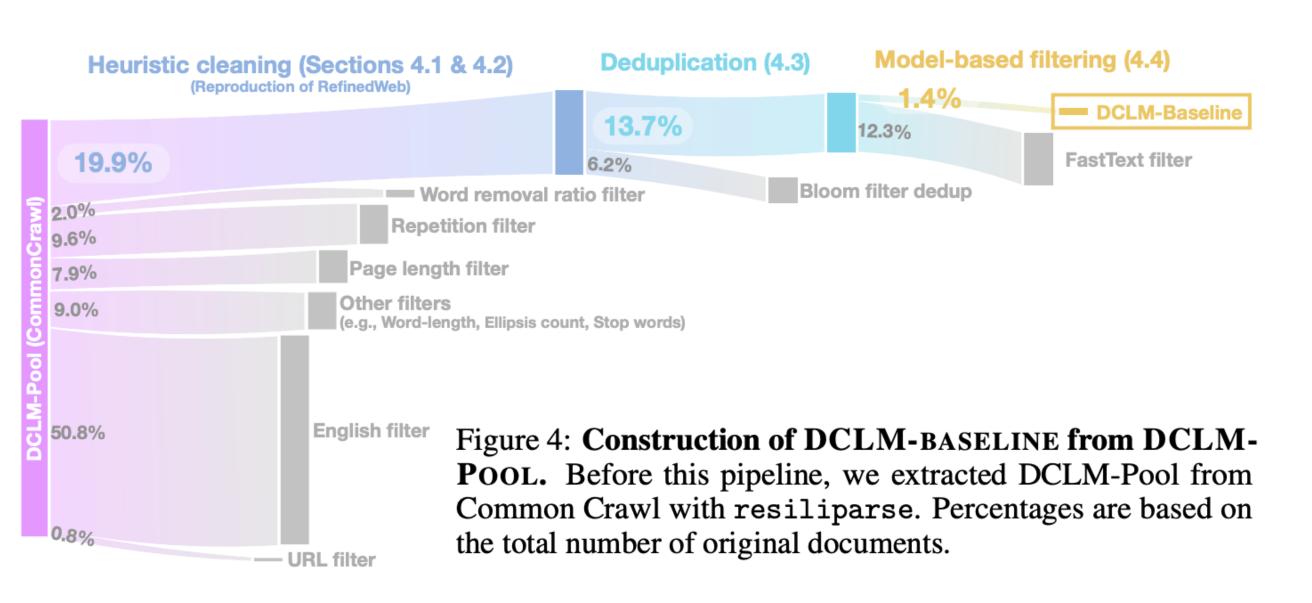


Data transformation: $X \rightarrow X'$



Data transformation: $X \to X'$

Filtering



Rewriting

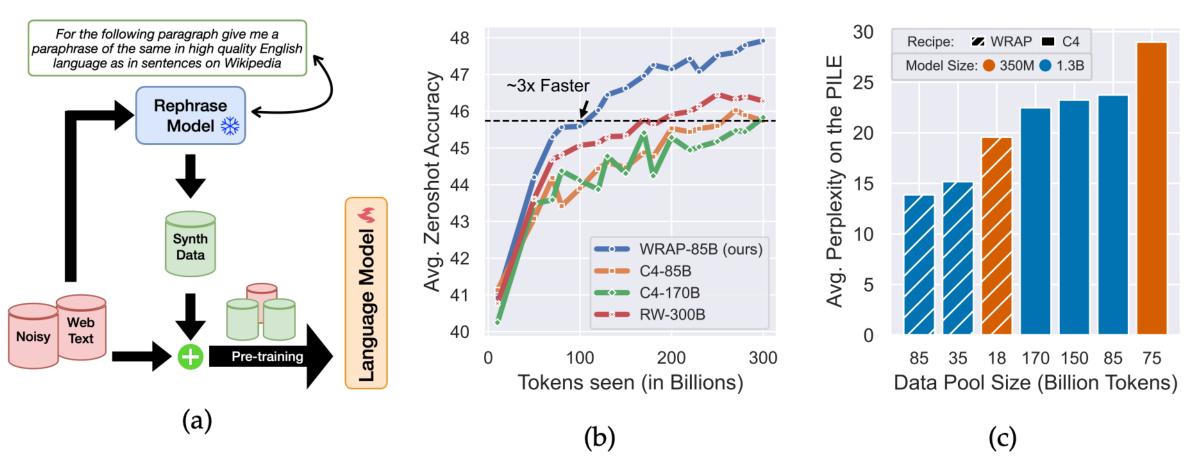
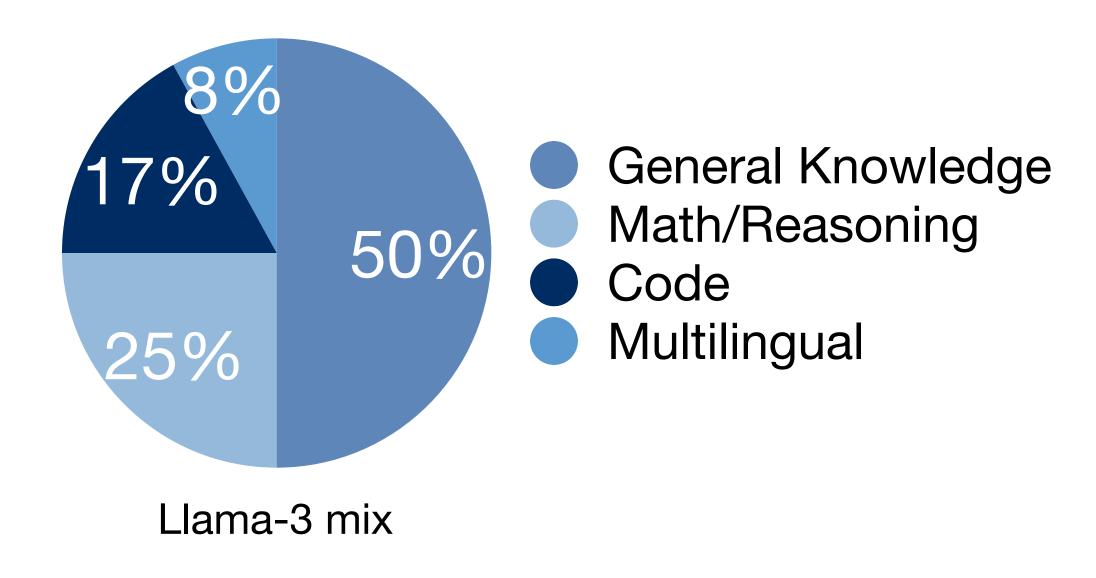


Figure 1: (a) **WRAP** Recipe: We prompt an off-the-shelf instruction-tuned model to rephrase articles on the web, and pre-train an LLM on a mixture of real and synthetic data. (b) Zero-shot performance of GPT 1.3B models trained on combinations of C4 and synthetic variations. Each step corresponds to a batch of 1M samples. (c) Weighted average perplexity over 21 sub-domains of the Pile for varying model sizes and amount of pre-training data.

Data mixing: $X_1, ..., X_m \rightarrow X_{final}$

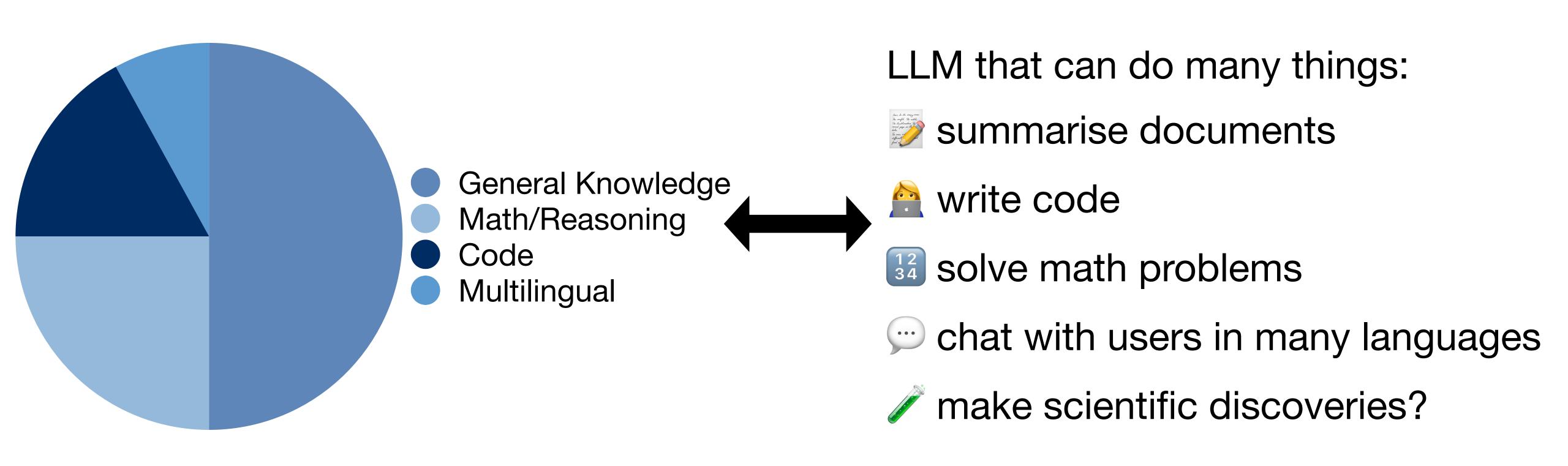
Goal: given m data domains, how should we combine the domains to produce a good model?

To be discussed in the next part of the tutorial!

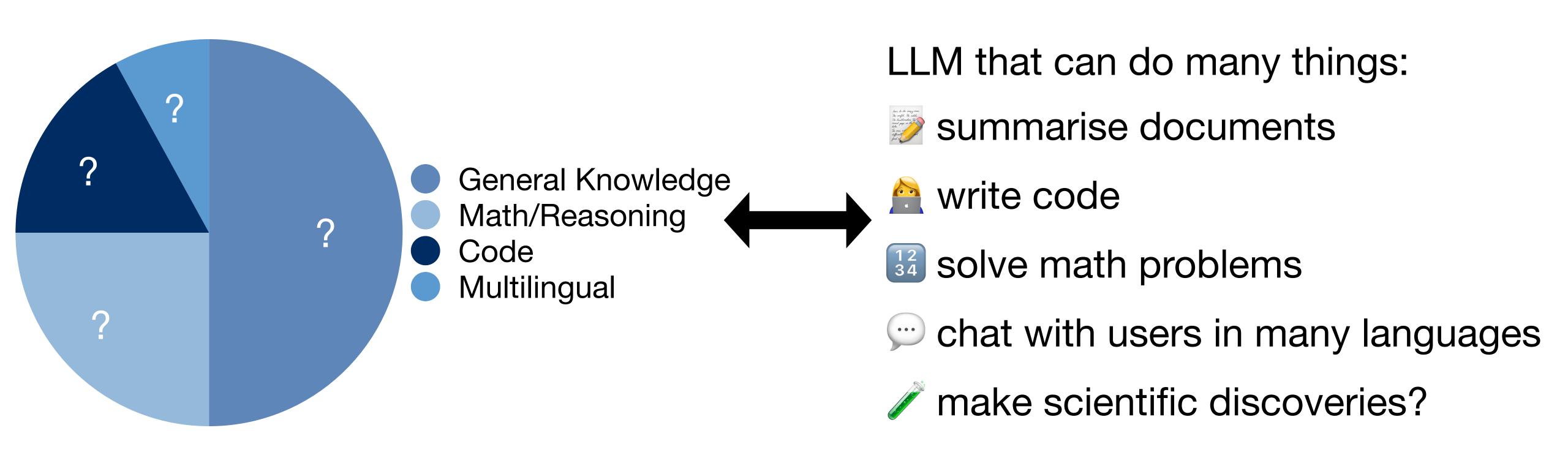


Deep dive: Data Mixing

What is Mixing?



What is Mixing?



Goal: given m domains, in what ratios p should we sample the domains to produce a model that excels at all desired capabilities?"

Why mix?

Reality:

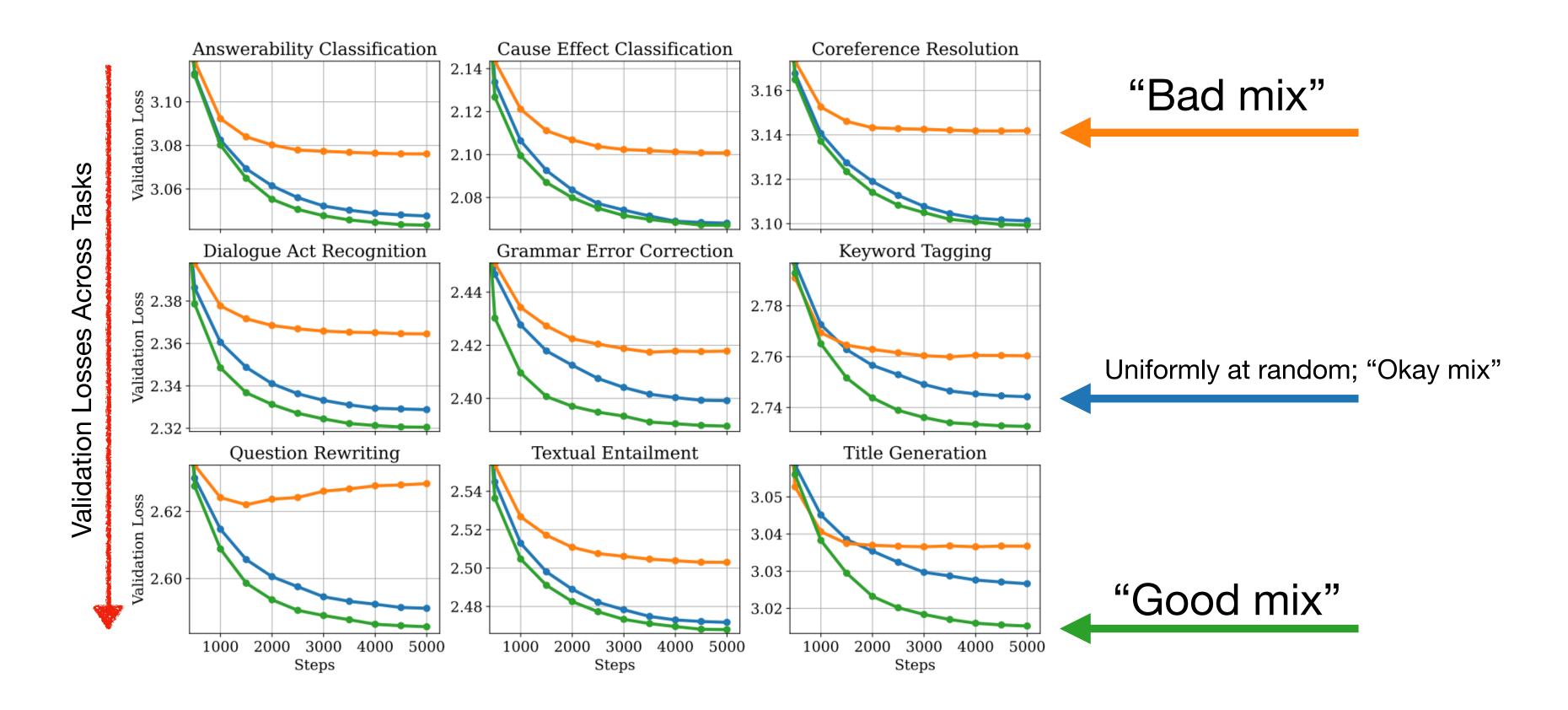
- Models are trained on multiple datasets.
- Mixing is inevitable: even simple concatenation of datasets is a form of mixing.

Mixing lets you:

- Control the training distribution with a low-dimensional knob, p.
- Navigate trade-offs among desired model capabilities

Why mix?

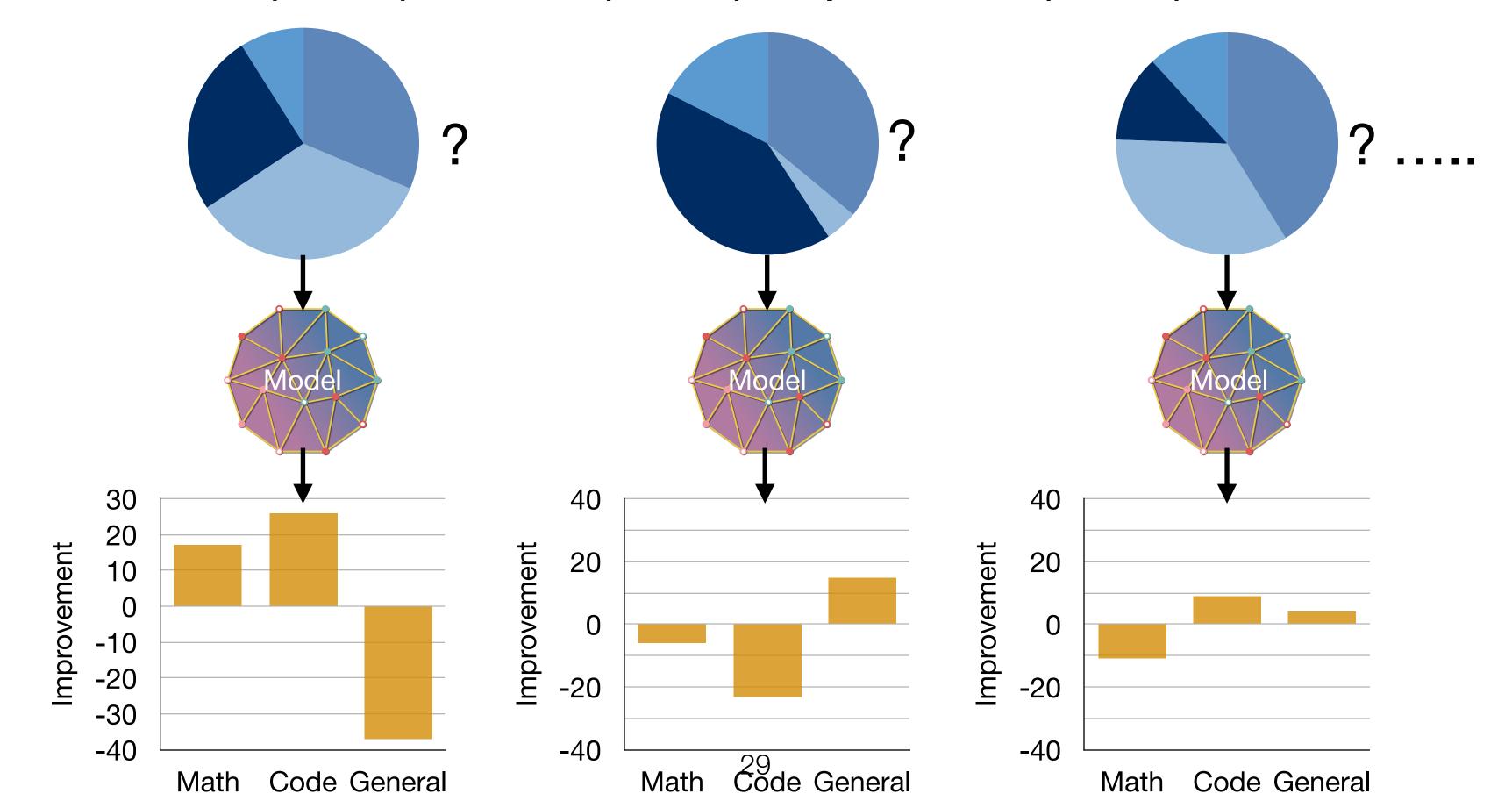
Mixing works! A "good mix" can dramatically improve performance across tasks.



Why is mixing challenging?

Naive approach: brute-force search/manual tuning to find a good mix = costly!

Used in GLAM (2021), Tulu3 (2024), OpenVLA (2024)

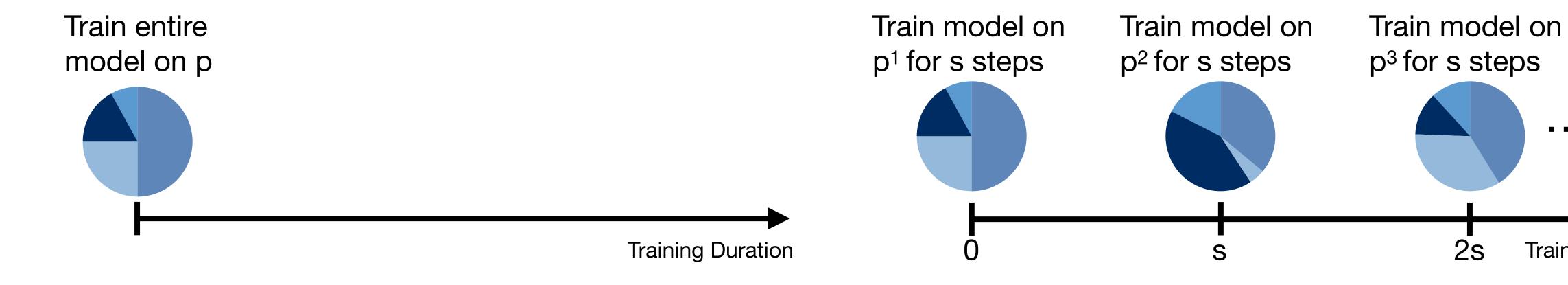


Mixing settings

Static mixing

Dynamic mixing

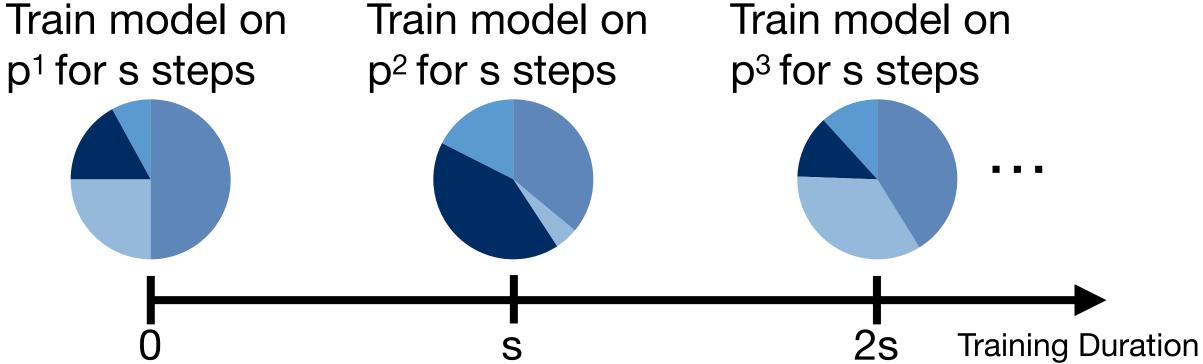
Training Duration



Mixing settings

Static mixing

Dynamic mixing Train model on Train model on Train m



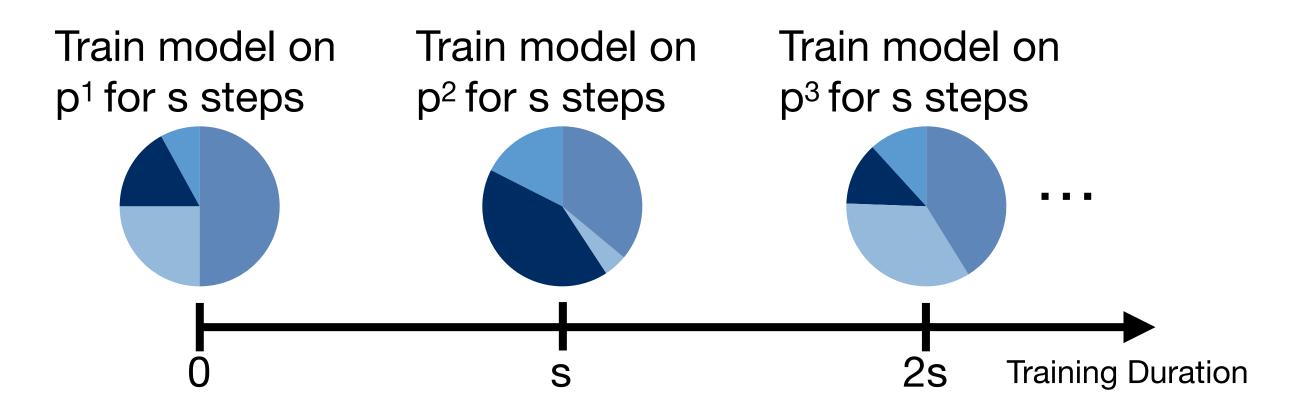
- Simple; prepare mix & hit "run"
- Reusable (e.g., "OXE Magic Soup")
- X Can leave performance on the table

Mixing settings

Static mixing

- Simple; prepare mix & hit "run"
- Reusable (e.g., "OXE Magic Soup")
- X Can leave performance on the table

Dynamic mixing



- Adapts mix to current model checkpoint
- Strong evidence that order matters (example: learning 1 digit addition before 2 digit addition)
- X Implementation issues (incompatible with many trainers)
- X Difficult to reuse a dynamic mix

• Given: m training domains D_1, \ldots, D_m , token budget N

- Given: m training domains $D_1, ..., D_m$, token budget N
- Choose: data mix $p\in \triangle^{m-1}$, then create D_{train} using $N\times p_i$ tokens per domain D_i

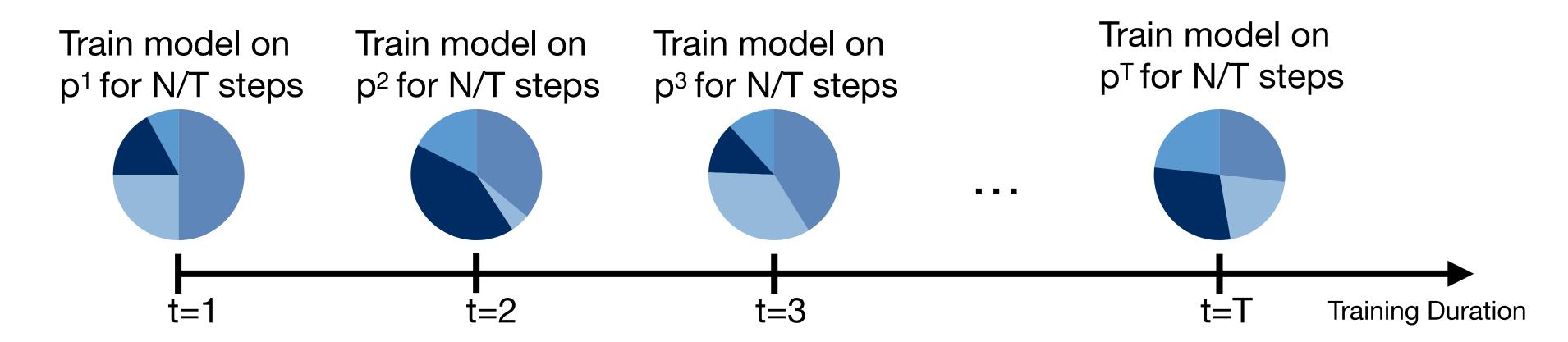
- Given: m training domains D_1, \ldots, D_m , token budget N
- Choose: data mix $p\in \triangle^{m-1}$, then create D_{train} using $N\times p_i$ tokens per domain D_i
- Evaluate: Train LM(p), compute validation loss $f_i(LM(p))$ for n val datasets
 - Val datasets: held-out split on training domains (n=m), or OOD/downstream

- Given: m training domains D_1, \ldots, D_m , token budget N
- Choose: data mix $p\in \triangle^{m-1}$, then create D_{train} using $N\times p_i$ tokens per domain D_i
- Evaluate: Train LM(p), compute validation loss $f_i(LM(p))$ for n val datasets
 - Val datasets: held-out split on training domains (n=m), or OOD/downstream
- Static Data Mixing Problem:

$$minimize_{p \in \triangle^{m-1}} \frac{1}{n} \sum_{i=1}^{n} f_i(LM(p))$$

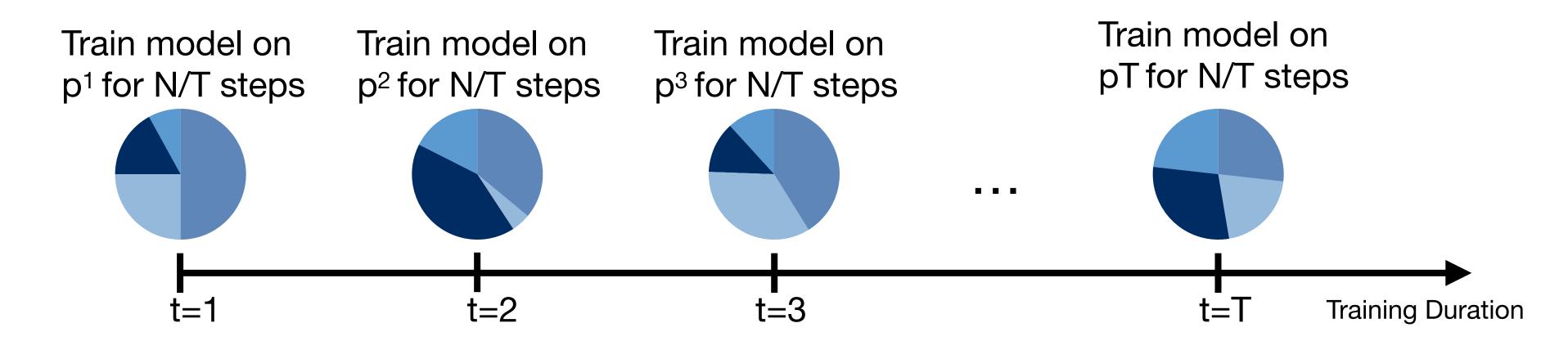
Goal: compute near-optimal p* in a way that's more efficient than search

Formal problem (dynamic)



• Choose: Split training into T stages according to the dynamic mix $p = [p^1, p^2, ..., p^T]$ (where each $p^t \in \Delta^{m-1}$)

Formal problem (dynamic)



- Choose: Split training into T stages according to the dynamic mix $p = [p^1, p^2, ..., p^T]$ (where each $p^t \in \triangle^{m-1}$)
- Dynamic Data Mixing Problem:

Goal: compute near-optimal p* in a way that's more efficient than search

Many methods...

Efficient Online Data Mixing For Language Model Pre-Training

Liangming Pan¹ Colin Raffel^{2,3} William Yang Wang³ ¹University of California, Santa Barbara ²University of Toronto

DoReMi: Optimizing Data Mixtures Speeds Up Language **Model Pretraining**

Sang Michael Xie*1,2, Hieu Pham1, Xuanyi Dong1, Nan Du1, Hanxiao Liu1, Yifeng Lu1, Percy Liang², Quoc V. Le¹, Tengyu Ma², and Adams Wei Yu¹

> ¹Google DeepMind ²Stanford University

Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance

Jiasheng Ye^{1,*} Peiju Liu^{1,*} Tianxiang Sun¹ Yunhua Zhou² Jun Zhan¹ Xipeng Qiu^{1,†}

OPTIMIZING PRETRAINING DATA MIXTURES WITH LLM-ESTIMATED UTILITY

William Held* $^{\sigma,\gamma}$ Bhargavi Paranjape $^{\mu}$ Punit Singh Koura $^{\mu}$ Mike Lewis $^{\mu}$ Frank Zhang $^{\mu}$ Todor Mihaylov $^{\mu}$ $^{\mu}$ Meta AI $^{\sigma}$ Stanford University $^{\gamma}$ Georgia Institute of Technology

PiKE: Adaptive Data Mixing for Large-Scale **Multi-Task Learning Under Low Gradient Conflicts** **REGMIX: Data Mixture as Regression for Language Model Pre-training**

Qian Liu¹*, Xiaosen Zheng²*, Niklas Muennighoff³, Guangtao Zeng⁴, Longxu Dou¹ Tianyu Pang¹, Jing Jiang², Min Lin¹ ¹Sea AI Lab ²SMU ³Contextual AI ⁴SUTD liuqian@sea.com; xszheng.2020@phdcs.smu.edu.sg

ADAPTIVE DATA OPTIMIZATION: DYNAMIC SAMPLE SELECTION WITH SCALING LAWS

Yiding Jiang^{†*} Allan Zhou^{‡*} Zhili Feng[†] Sadhika Malladi[§] J. Zico Kolter[†] Carnegie Mellon University† Stanford University‡ Princeton University§ yidngji@cs.cmu.edu, ayz@cs.stanford.edu

Skill-it! A Data-Driven Skills Framework for Understanding and **Training Language Models**

Mayee F. Chen*1 Kush Bhatia¹ Jue Wang³ Ce Zhang^{3, 4} Nicholas Roberts² Frederic Sala² Christopher Ré¹

OVIDIA

CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training

Shizhe Diao, Yu Yang[†], Yonggan Fu², Xin Dong, Dan Su, Markus Kliegl, Zijia Chen, Peter Belcak, Yoshi Suhara, Hongxu Yin, Mostofa Patwary, Yingyan (Celine) Lin², Jan Kautz, Pavlo Molchanov

DoGE : Domain Reweighting with Generalization Estimation

Simin Fan 1 Matteo Pagliardini 1 Martin Jaggi 1

Numerous techniques: bandits, distributionally robust optimization, multitask learning, portfolio optimization, ...

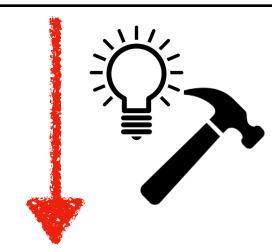
Which one to use? What are they really doing?

¹University of Southern California ²Google Research {zemanli,razaviya}@usc.edu {dengyuan,peilinz,mirrokni}@google.com

Zeman Li^{1,2*} Yuan Deng² Peilin Zhong² Meisam Razaviyayn^{1,2} Vahab Mirrokni²

There is a structured relationship between the data mix p and the performance metrics $f_i(LM(p))$.

There is a structured relationship between the data mix p and the performance metrics $f_i(LM(p))$.



Takeaway: Aim to *understand* the relationship between performance and data, then *exploit* this understanding to optimize the data mix!

The relationship between the mix p and $f_i(LM(p))$ can be modelled by a **mixing law:**

$$f_i(LM(p)) \approx b_i \sigma(-A_i^{\mathsf{T}} p) + c_i \quad A_i \in \mathbb{R}^m \ b_i, c_i \in \mathbb{R} \ \forall i \in [n]$$

The relationship between the mix p and $f_i(LM(p))$ can be modelled by a **mixing law:**

$$f_i(LM(p)) \approx b_i \sigma(-A_i^{\mathsf{T}} p) + c_i \quad A_i \in \mathbb{R}^m \ b_i, c_i \in \mathbb{R} \ \forall i \in [n]$$

Monotonic + linear in mix

The relationship between the mix p and $f_i(LM(p))$ can be modelled by a **mixing law:**

$$f_i(LM(p)) \approx b_i \sigma(-A_i^{\mathsf{T}} p) + c_i \quad A_i \in \mathbb{R}^m \ b_i, c_i \in \mathbb{R} \ \forall i \in [n]$$

Monotonic + linear in mix

Interpretation:

- Small/big change in p = small/big change in performance
- Each domain linearly contributes A_{ij} , a "score" for how much domain j impacts validation dataset i

Case study: two methods that utilise mixing laws

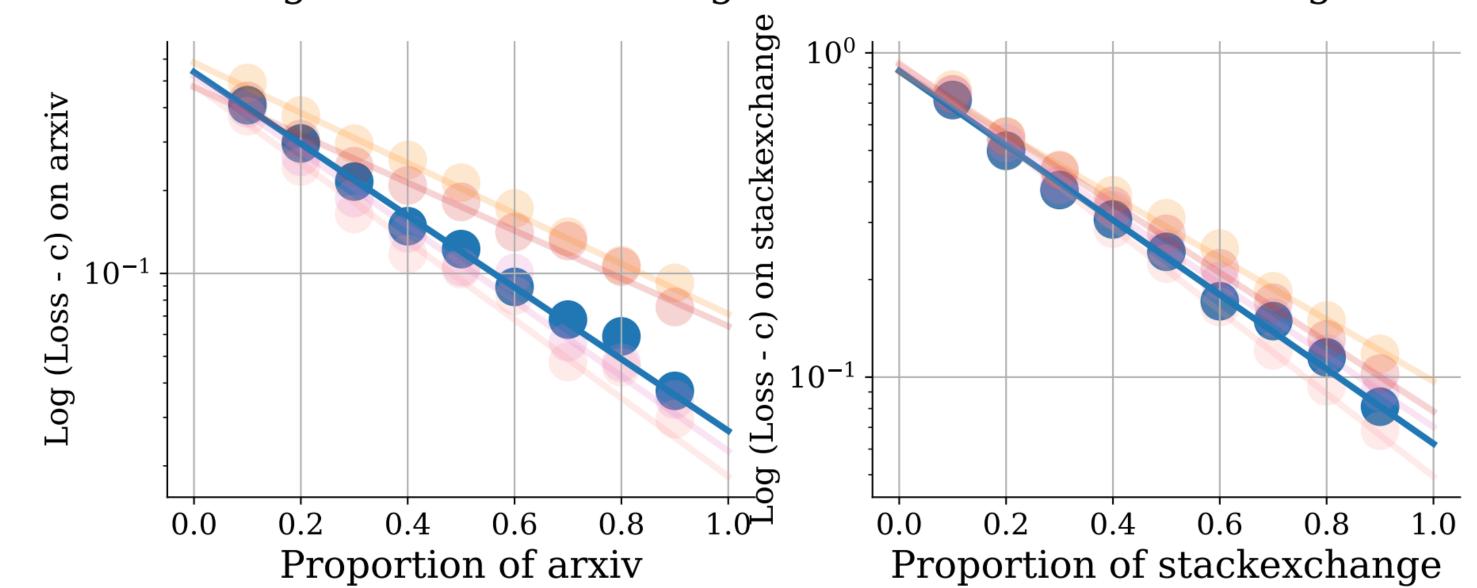
Static setting: Data Mixing Laws (Ye et al., 2024)

$$f_i(LM(p)) \approx \exp(-A_i^{\mathsf{T}}p) + c_i$$

Static setting: Data Mixing Laws (Ye et al., 2024)

$$f_i(LM(p)) \approx \exp(-A_i^{\mathsf{T}}p) + c_i$$

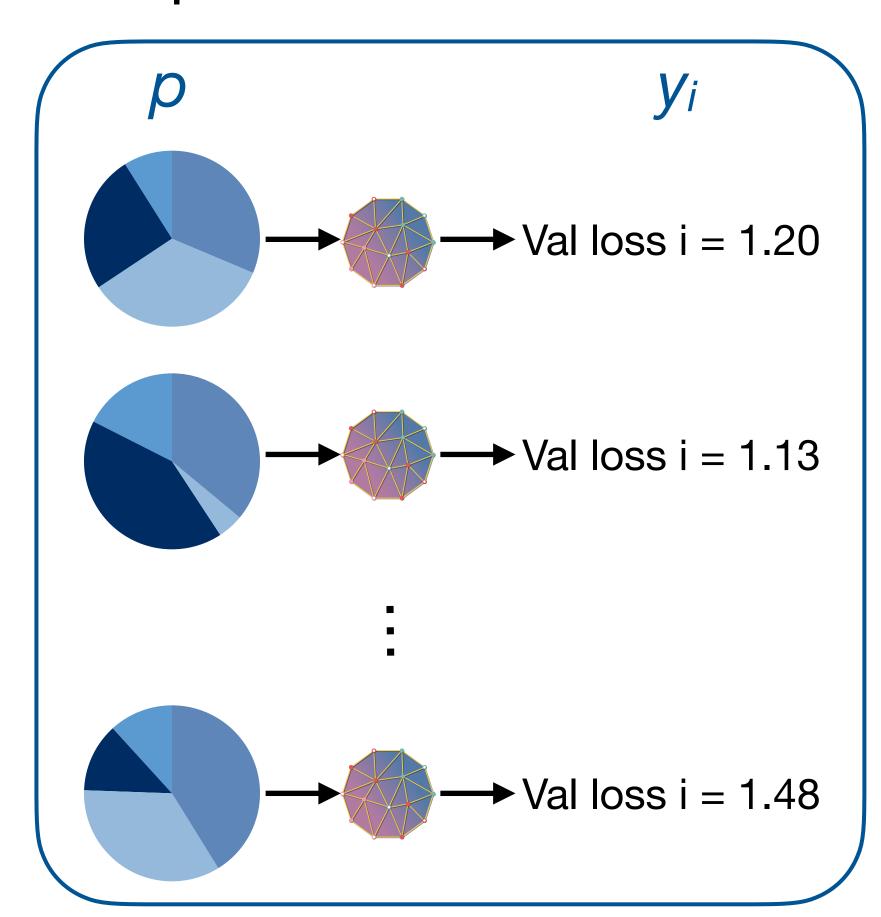
Log-linear static mixing law on Arxiv/StackExchange



R² of static mixing law on SlimPajama (7 domains): 0.997

1. Explore 2. Fit 3. Optimize

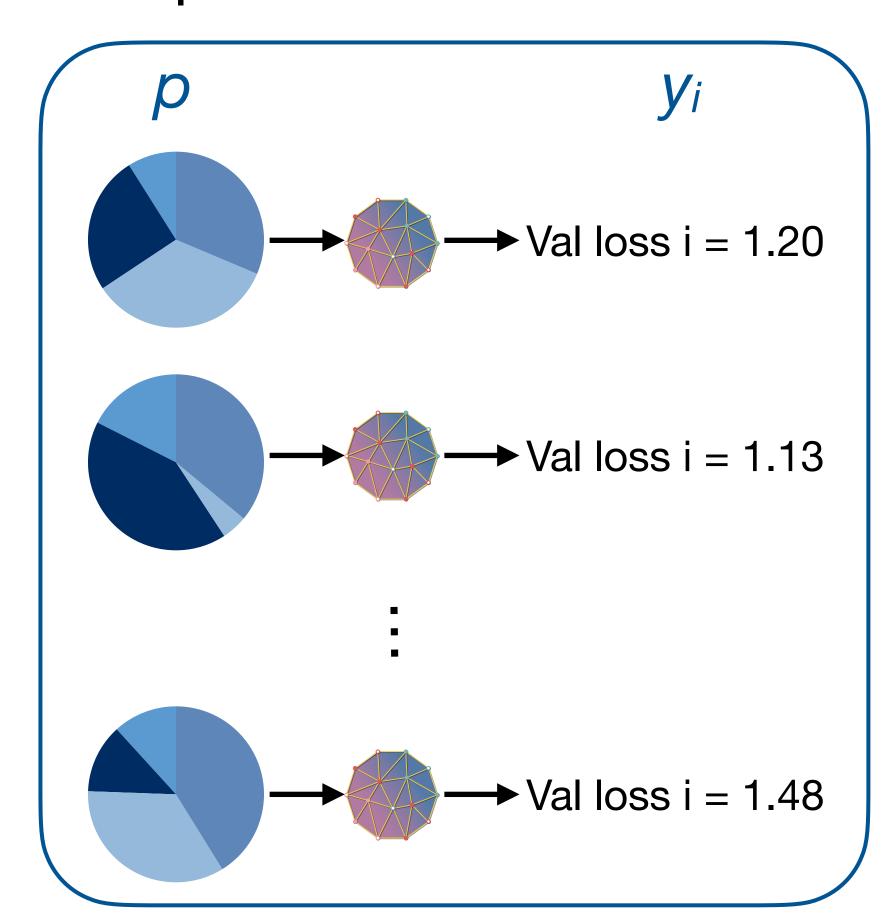
1. Explore



2. Fit

3. Optimize

1. Explore

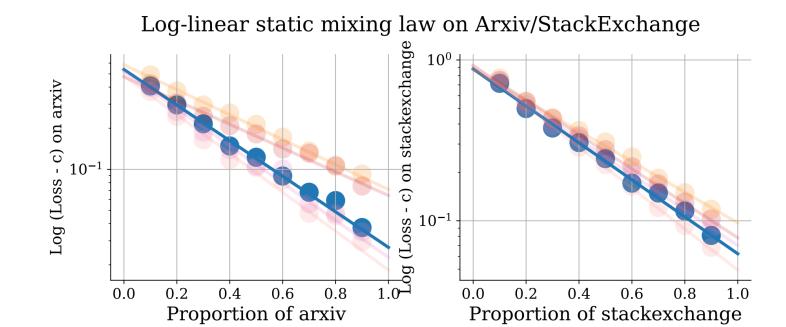


2. Fit

3. Optimize

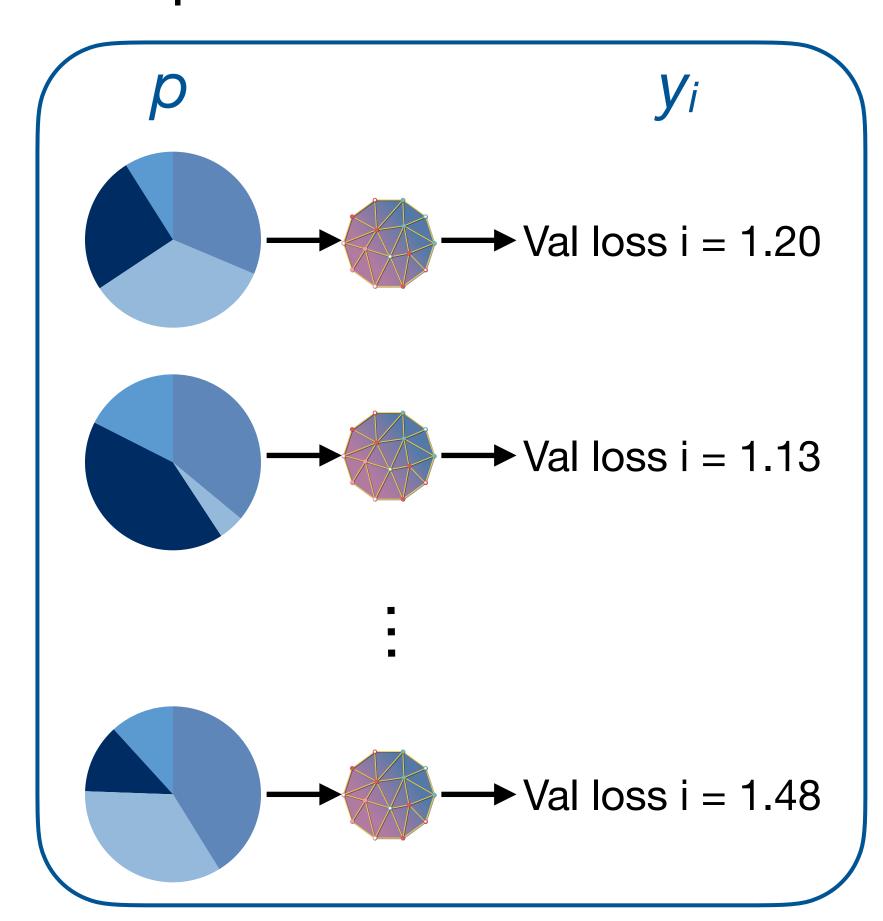
Use (p, yi) to fit parameters of mixing law

$$\hat{f}_i(LM(p)) := \exp(-\hat{A}_i^{\mathsf{T}} p) + \hat{c}_i$$



o. Optimize

1. Explore



2. Fit

Use (p, yi) to fit parameters of mixing law

$$\hat{f}_i(LM(p)) := \exp(-\hat{A}_i^{\mathsf{T}} p) + \hat{c}_i$$

Log-linear static mixing law on Arxiv/StackExchange

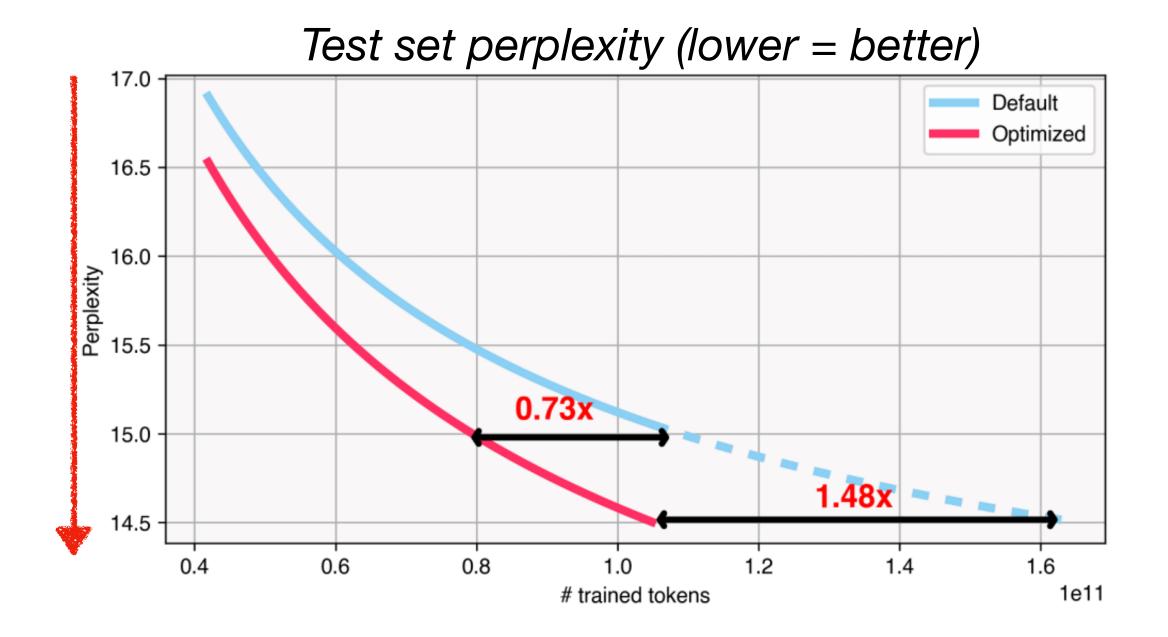
Proportion of arxiv

Proportion of stackexchange

3. Optimize

$$\mathsf{minimize}_{p \in \triangle^{m-1}} \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{i}(LM(p))$$

Static Mixing Law: Results



Domains	Default Mixture	Optimized Mixture
CommonCrawl	0.6700	0.1250
C4	0.1500	0.2500
Github	0.0450	0.1406
ArXiv	0.0450	0.2500
Books	0.0450	0.0938
StackExchange	0.0250	0.1250
Wikipedia	0.0200	0.0156

Figure 8: The validation perplexity on the Pile validation set for 1B models trained on the default mixture and the optimized mixture of RedPajama for 100B tokens. Our optimized mixture achieves the performance of the default mixture only using 0.73 of the original number of training steps and eventually achieves a performance comparable to a default mixture trained with 1.48 times more tokens (estimated by the scaling law of training steps, shown as the dashed line). The specific mixture proportions are in the right table.

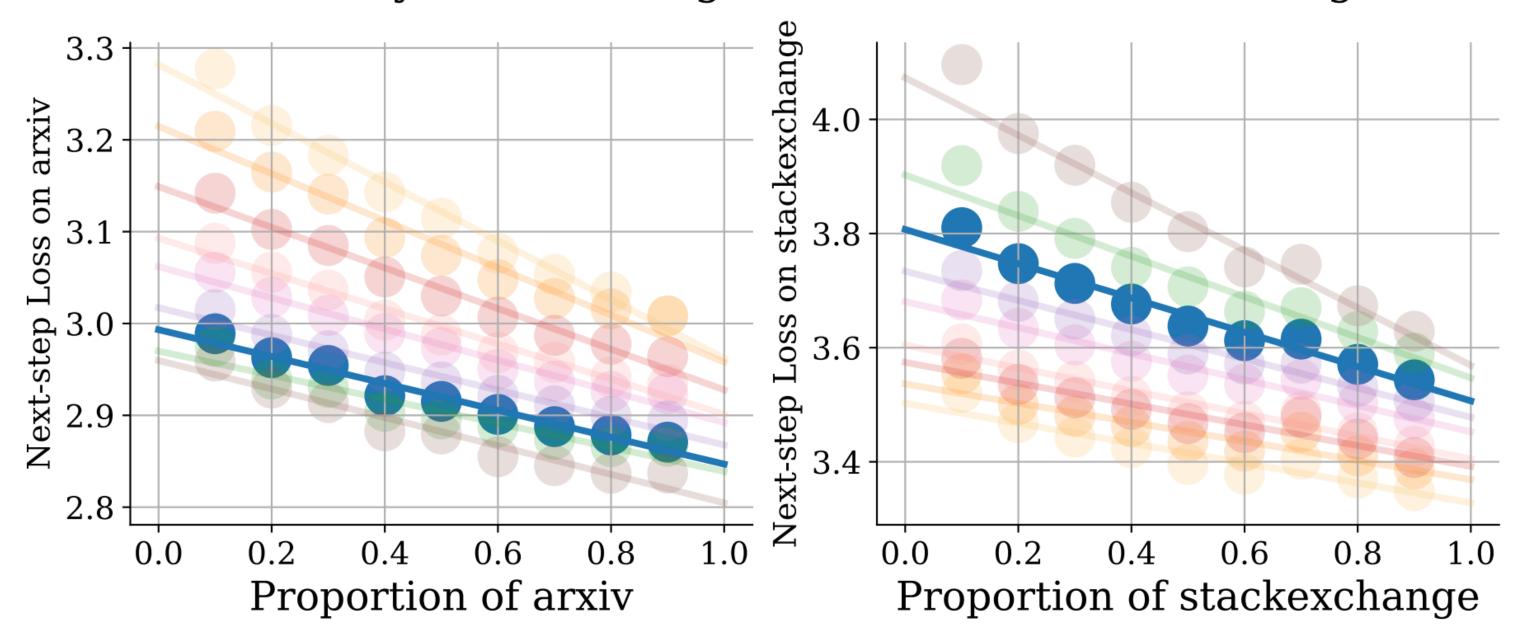
Dynamic setting: Aioli (Chen et al., 2024)

$$f_i^{t+1}(LM(p)) \approx f_i^t(LM(p)) - A_{i,t}^{\mathsf{T}} p^t$$

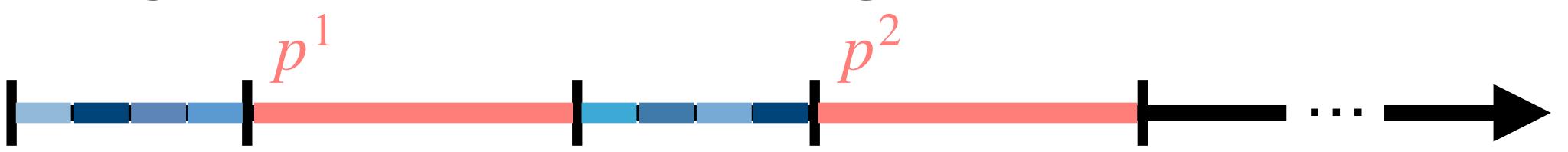
Dynamic setting: Aioli (Chen et al., 2024)

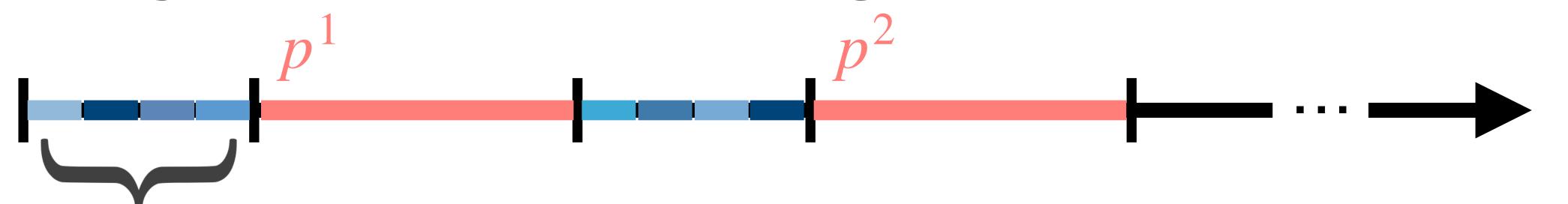
$$f_i^{t+1}(LM(p)) \approx f_i^t(LM(p)) - A_{i,t}^{\mathsf{T}} p^t$$

Linear dynamic mixing law on Arxiv/StackExchange

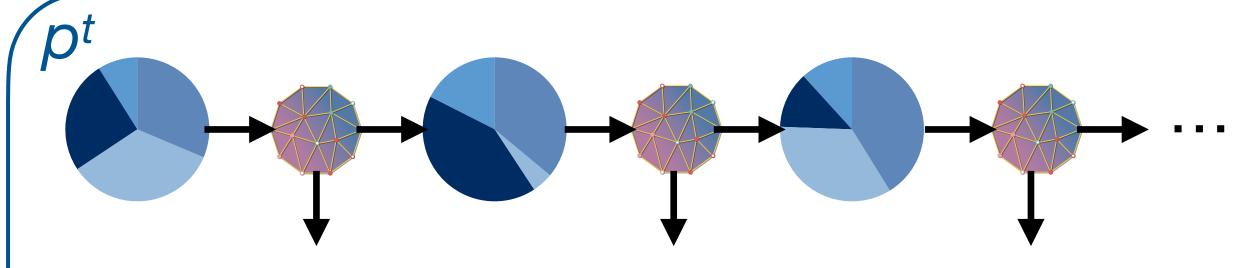


R² of dynamic mixing law on SlimPajama (7 domains): 0.938

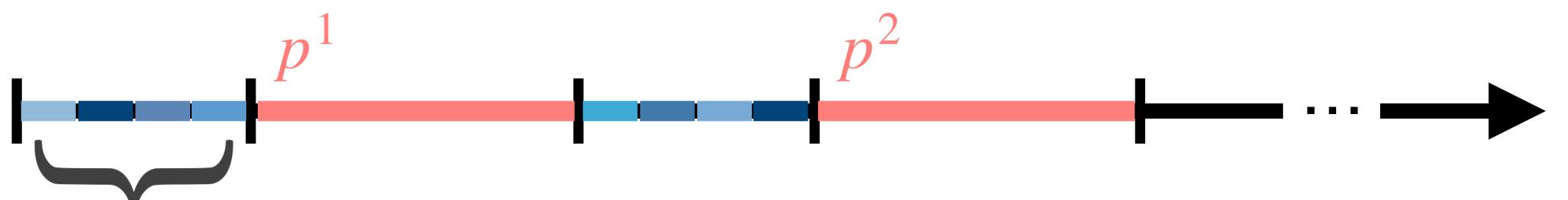




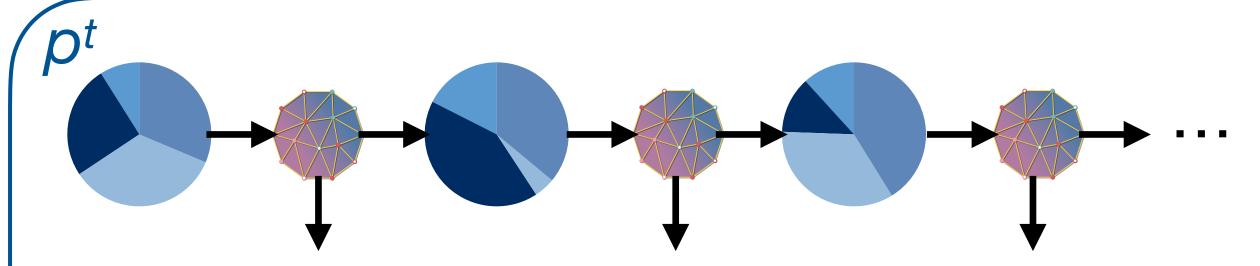
1. Explore



 $y_i^t \triangle \text{Val loss } i = -0.24 \triangle \text{Val loss } i = -0.31 \triangle \text{Val loss } i = +0.07$



1. Explore

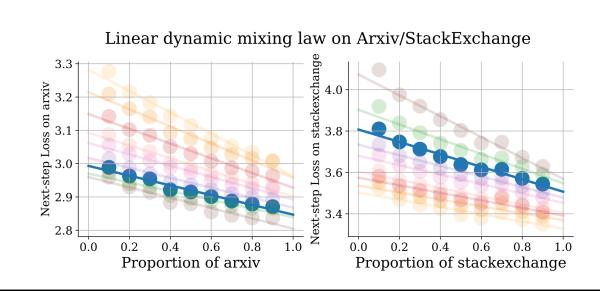


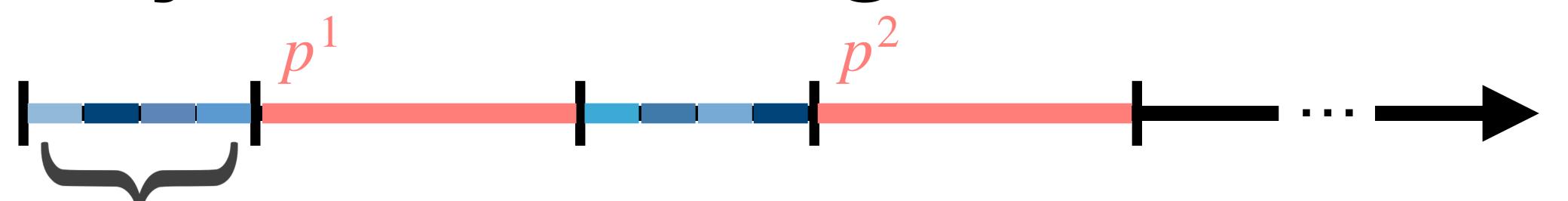
 $y_i^t \triangle \text{Val loss } i = -0.24 \triangle \text{Val loss } i = -0.31 \triangle \text{Val loss } i = +0.07$

2. Fit

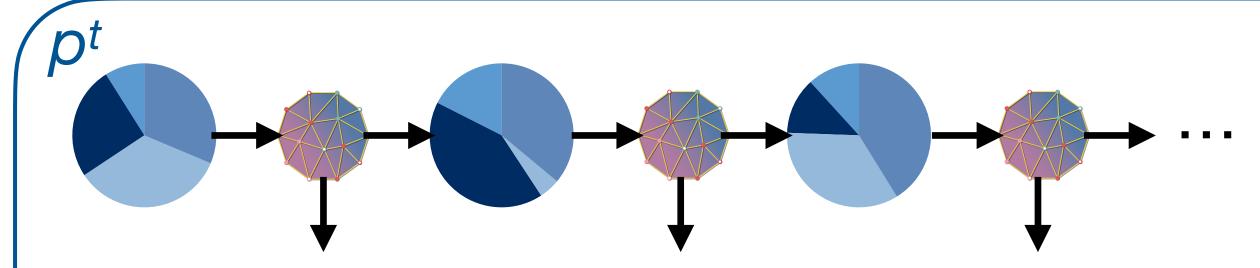
Use (p^t, y_i^t) to fit parameters of mixing law

$$\hat{f}_i^{t+1}(LM(p)) - \hat{f}_i^t(LM(p)) := -\hat{A}_{i,t}^{\mathsf{T}} p^t$$





1. Explore



 $V_i^t \triangle \text{Val loss } i = -0.24 \triangle \text{Val loss } i = -0.31 \triangle \text{Val loss } i = +0.07$

3. Optimize

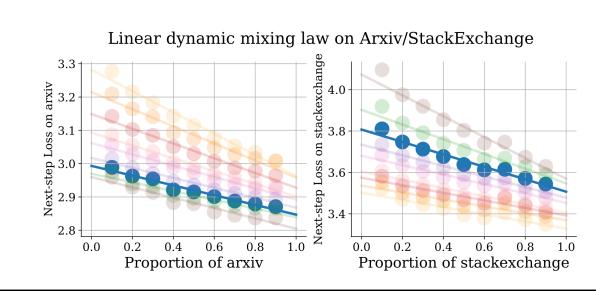
$$\min_{p \in \triangle^{(m-1)\times T}} \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{i}^{T}(LM(p))$$

$$\Rightarrow p_j^{t+1} \propto p_j^t \exp\left(\eta \sum_{i=1}^m \hat{A}_{ij,t}\right)$$

2. Fit

Use (p^t, y_i^t) to fit parameters of mixing law

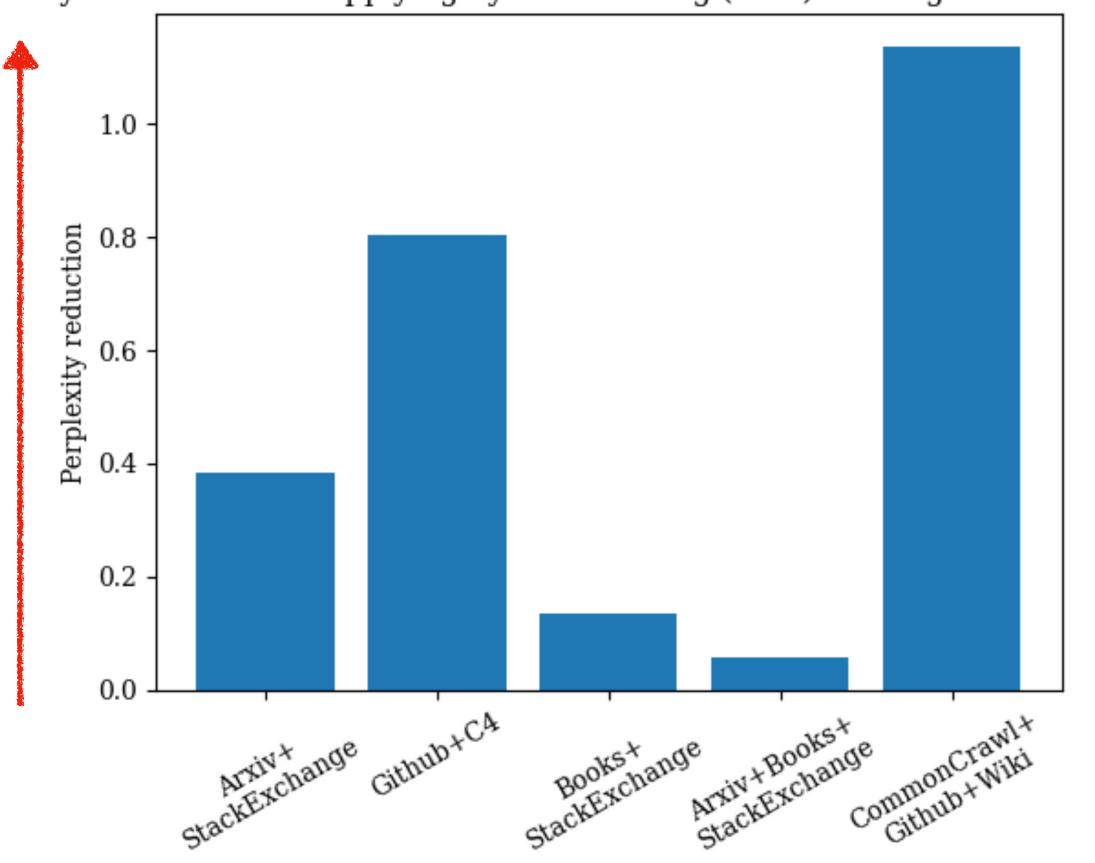
$$\hat{f}_i^{t+1}(LM(p)) - \hat{f}_i^t(LM(p)) := -\hat{A}_{i,t}^{\top} p^t$$



Dynamic Mixing Method: Results

Dynamic mixing improves over static mixing

Perplexity reduction from applying dynamic mixing (Aioli) starting from static mix (DML)



Implications of mixing laws: improving understanding

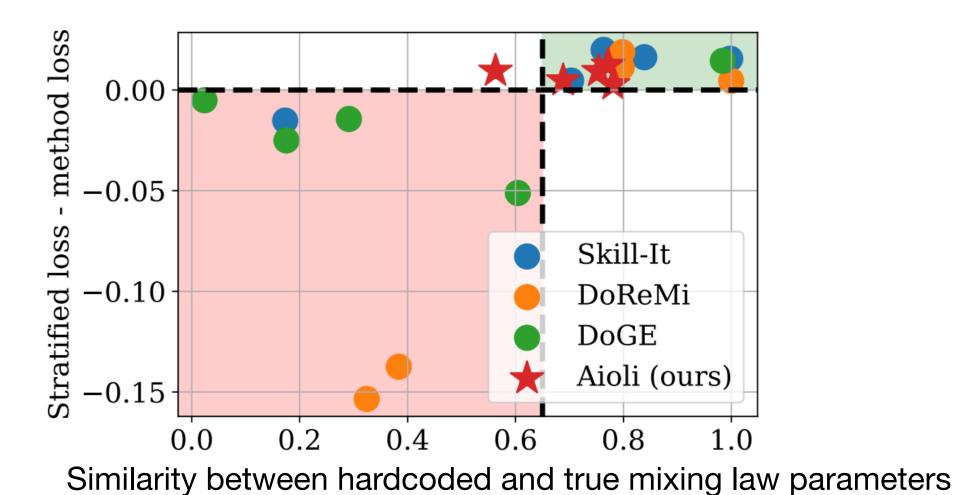
Understanding existing methods

- Many mixing methods share the same meta-procedure: explore, fit, and optimize.
- May use different mixing laws implicitly

Method	$A_t \operatorname{from} f_i^{t+1}(LM(p)) \approx f_i^t(LM(p)) - A_t^{T} p^t$
DoReMi (Xie et al., 2023)	$A_{ii,t} = \min\{f_i^t(LM(p)) - f_i^T(LM(p_{ref})), 0\}$
DoGE (Fan et al., 2024)	$A_{ij,t} = \langle \nabla f_i^t(LM(p)), \nabla f_j^t(LM(p)) \rangle$
Skill-It (Chen et al., 2023)	$A_{ij,t} = \langle \nabla f_i^t(LM(p)), \nabla f_j^t(LM(p)) \rangle$ $A_{ij,t} = f_i^t(LM(p)) \cdot \frac{f_i^T(LM(1_j)) - f_i^1(LM(1_j))}{f_i^1(LM(1_j))}$
Aioli (Chen et al., 2024)	Learned from fitting data to dynamic mixing law

Understanding existing methods

- Performance of existing method is correlated with the accuracy of its implicit mixing law
- Hardcoded params can produce inconsistent gains



$$f_i(LM(p)) \approx b_i \sigma(-A_i^{\mathsf{T}} p) + c_i$$

Recall interpretation: each domain linearly contributes A_{ij} , a "score" for how much domain j impacts validation dataset i. What does $A \in \mathbb{R}^{n \times m}$ actually look like?

If A is sparse and does not change over time, life is easy but boring

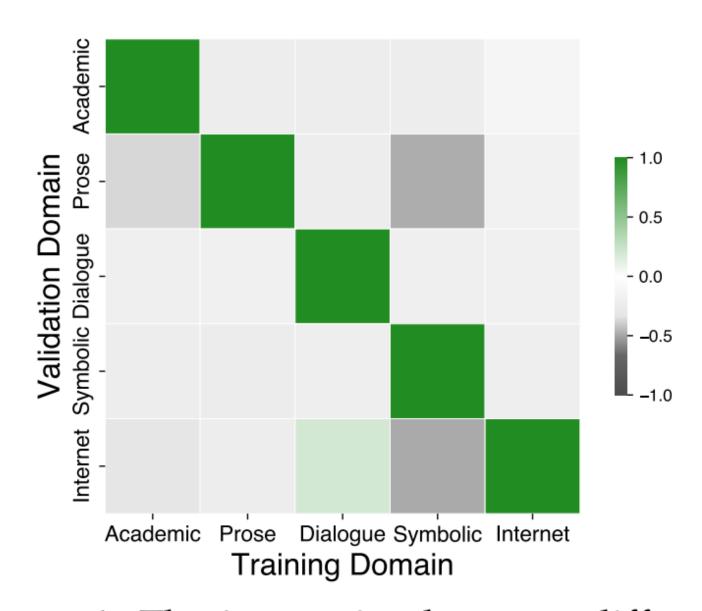
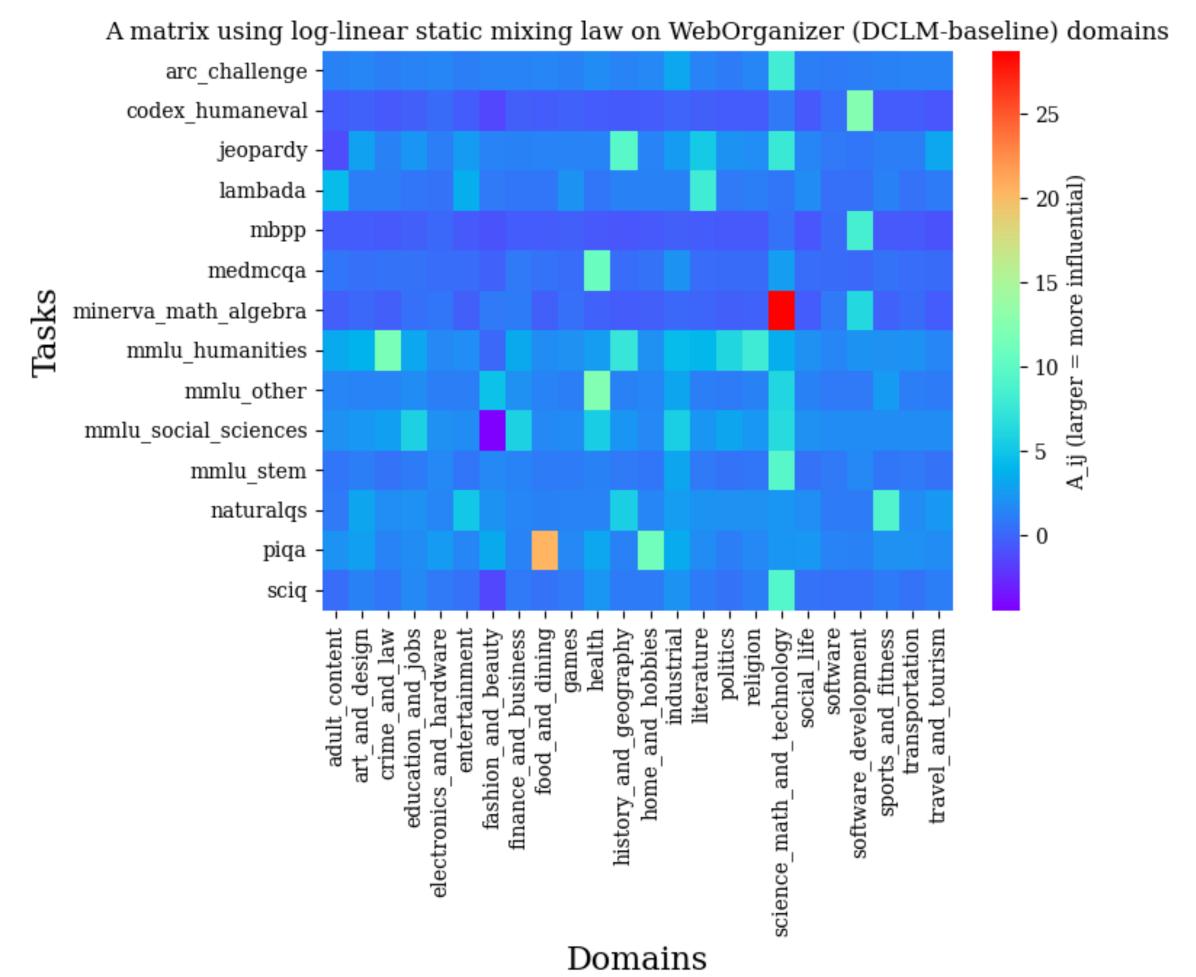
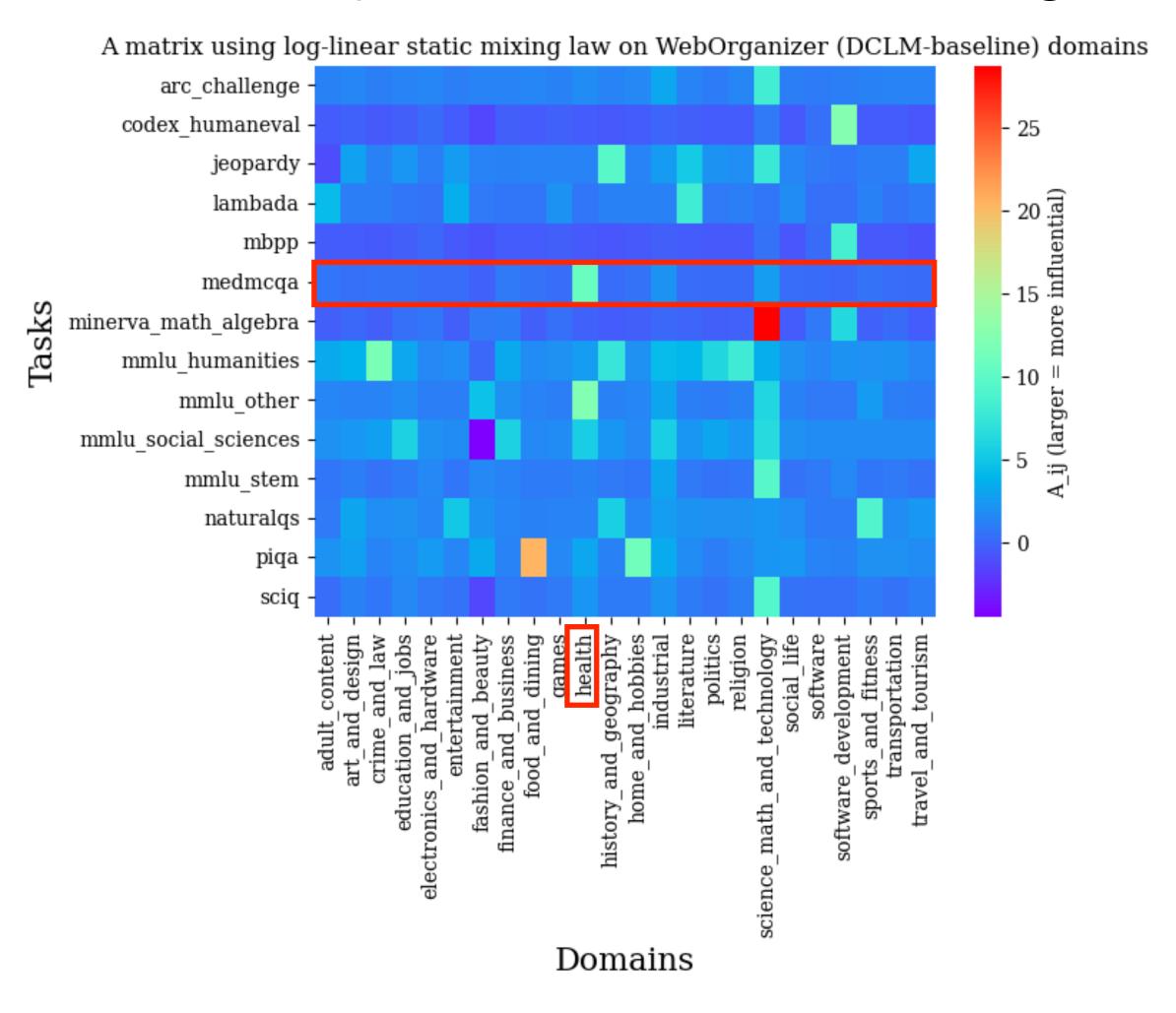
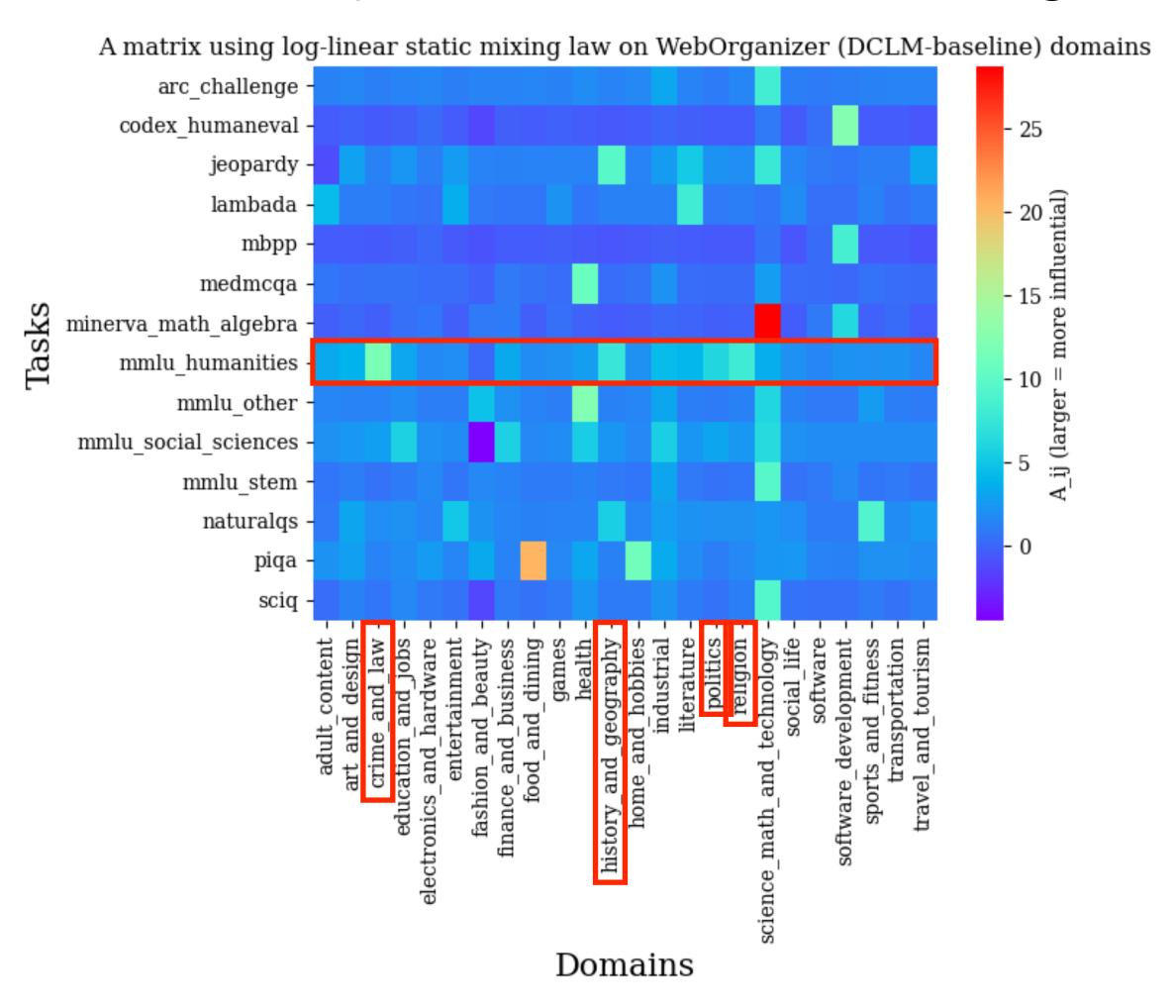
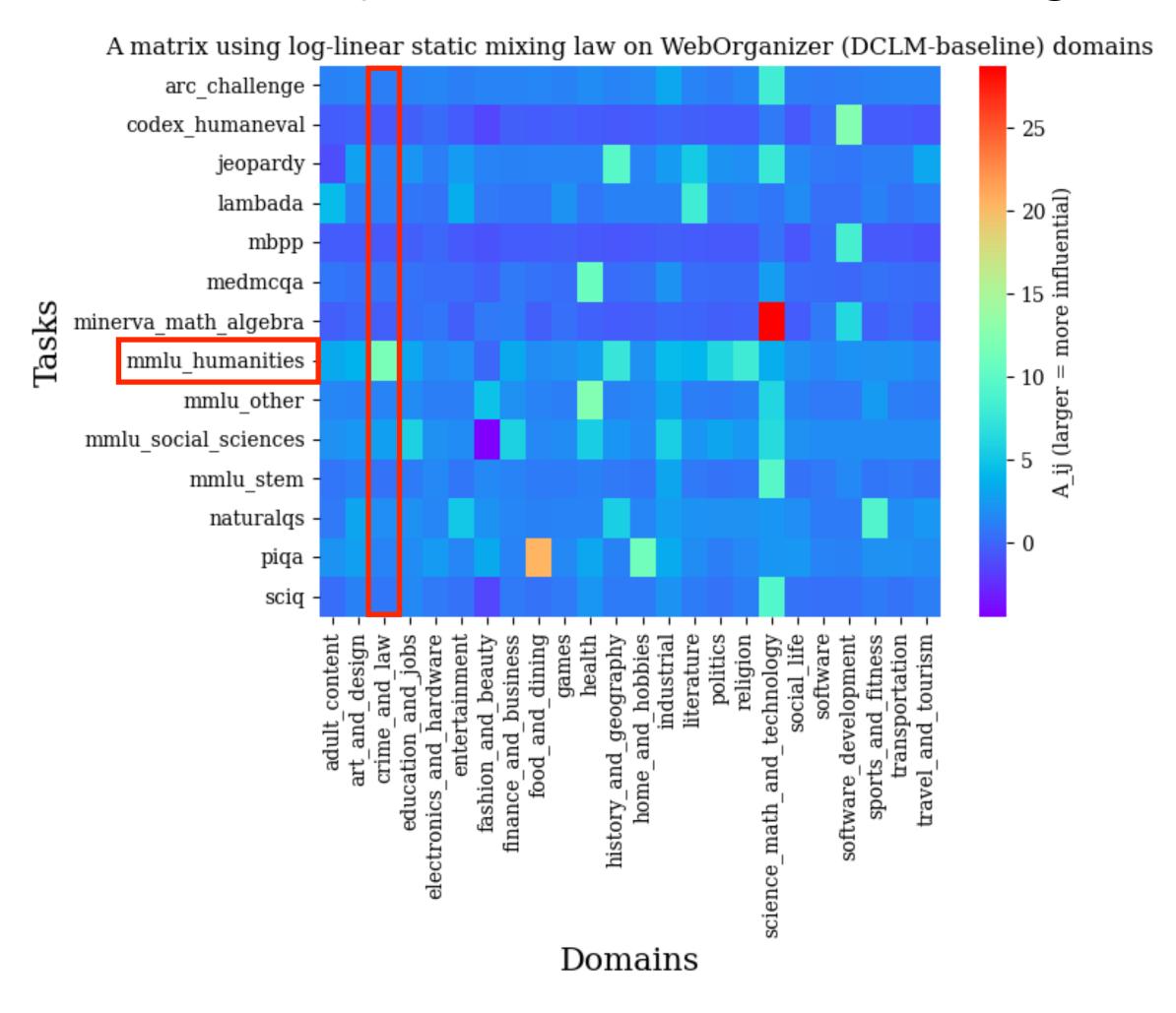


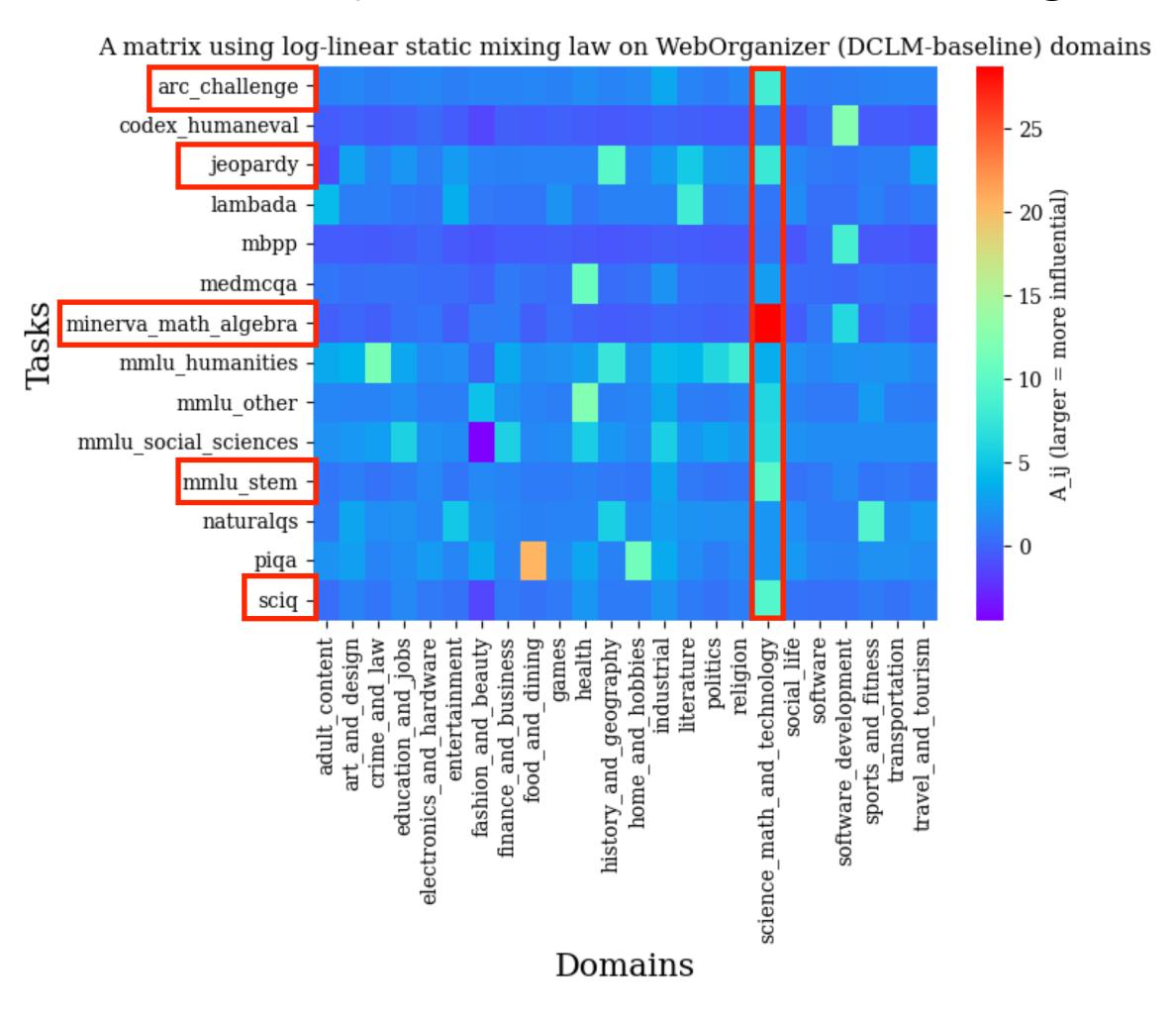
Figure 4: The interaction between different training and validation domains on the Pile. Each boxes are fitted normalized t_{ij} from Eqn. 7. We normalize the value by t_{ij} with the maximum absolute value for each validation set i (i.e., $t_{ij}/t_{i,\arg\max_j|t_{ij}|}$). A larger value (greener) indicates more mutual facilitation.

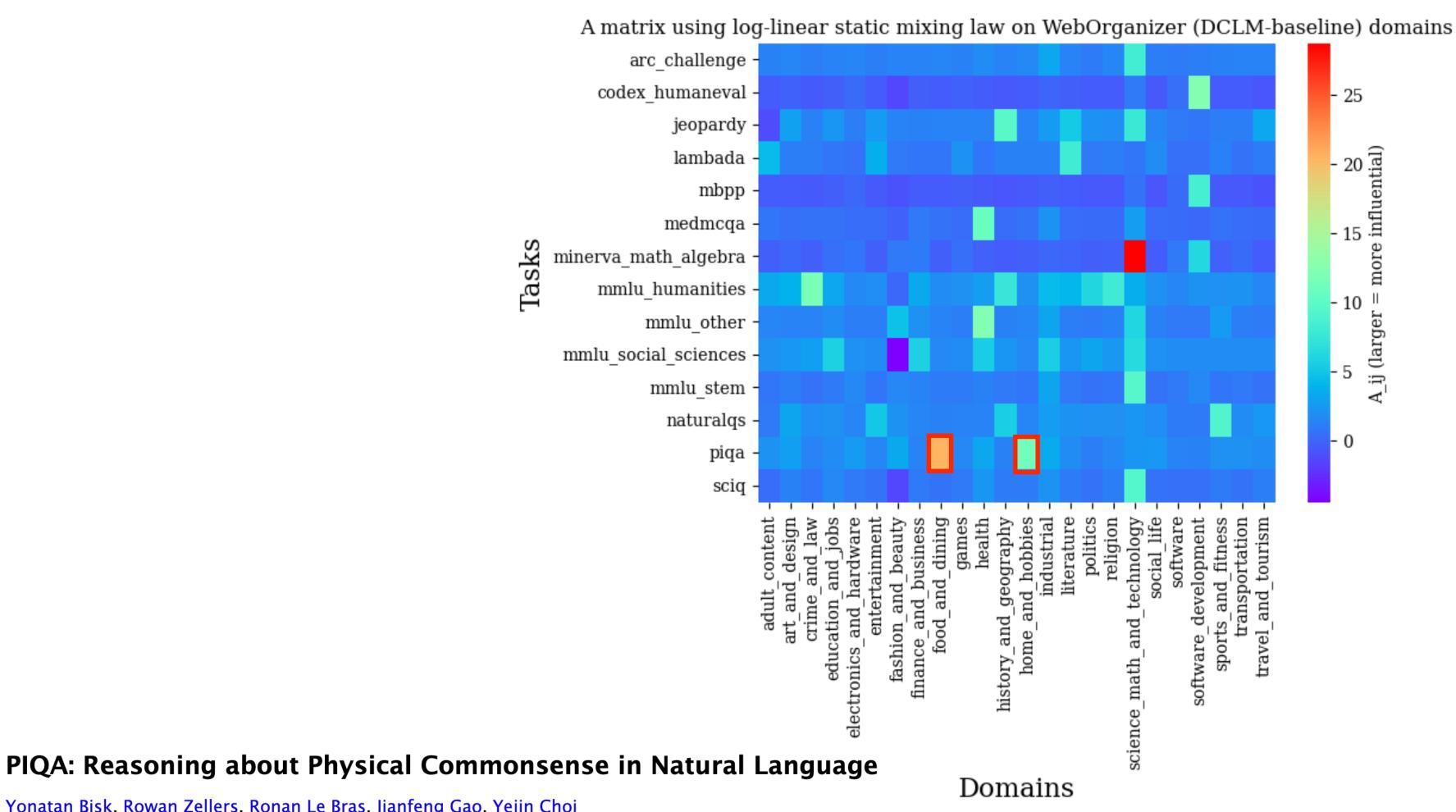




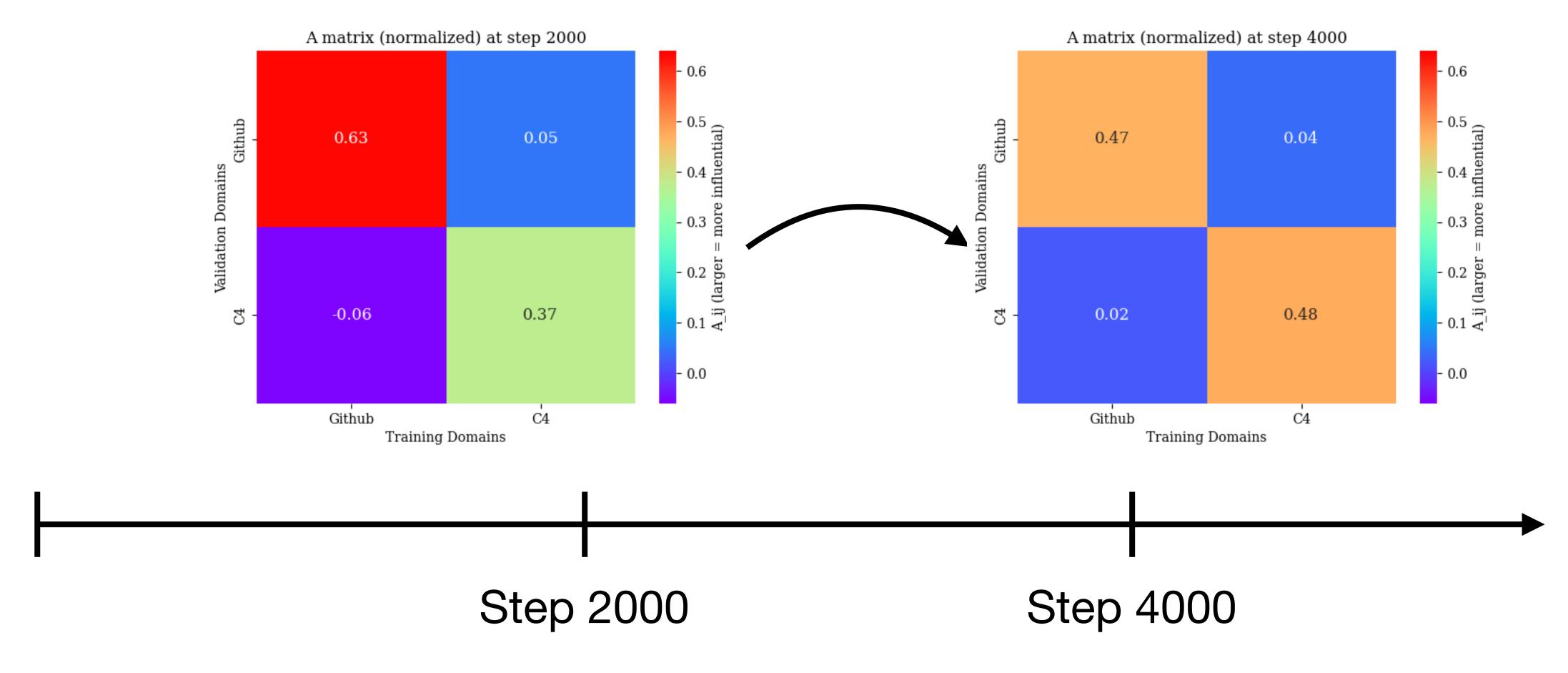








2. A matrix can change over time



Summary

- Data development pipeline: acquire (quantity), transform (quality), mix (composition)
- Mixing is an critical step that allows us to align the data distribution with a set of desired model capabilities, navigate tradeoffs
- Key development: performance is often roughly linear in the data mix!
- Mixing methods should exploit this structure to produce good mixes efficiently.

Looking forward

- What should a domain be?
 - We can mix across any unit.
 - Domains as sources (conventional), vs. topics and formats
- Can we use mixing to understand how to better acquire data? What can the A matrix tell us about what data the model needs the most?

Thank you!

Some suggested readings:

- General data development:
 - The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
 - BeyondWeb: Lessons from Scaling Synthetic Data for Trillion-scale Pretraining
 - DataComp-LM: In search of the next generation of training sets for language models
 - Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
- Mixing:
 - Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance
 - Aioli: A Unified Optimization Framework for Language Model Data Mixing
 - Organize the Web: Constructing Domains Enhances Pre-Training Data Curation

Email: mfchen@stanford.edu