Skill-it! A data-driven skills framework for understanding and training language models

Mayee F. Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Fred Sala, Christopher Ré

August 31st, Allen Al mfchen@stanford.edu

Motivation

Large language models (LLMs) can do many things:

Write code

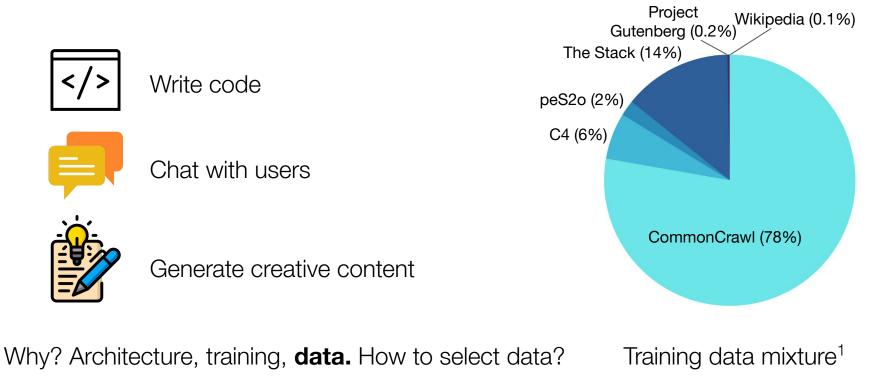
Chat with users

Generate creative content

Why? Architecture, training, data. How to select data?

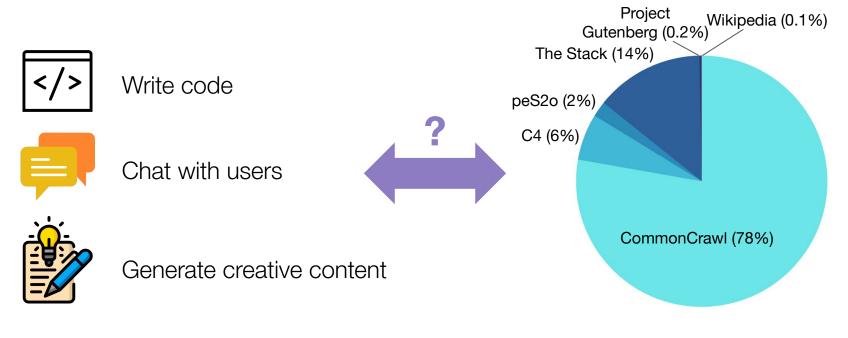
Motivation

Large language models (LLMs) can do many things:



Motivation

Large language models (LLMs) can do many things:



Why? Architecture, training, data. How to select data?

Training data mixture¹

How do humans learn from data? Learn skills in a certain order.

How do humans learn from data? Learn skills in a certain order.

How do humans learn from data? Learn skills in a certain order.

Learning hierarchy:

- Learning addition also helps with: subtraction, multiplication, linear equations
- Learning subtraction also helps with: division, linear equations
- And so on

LESSON PLAN WEEK 1: ADDITION WEEK 2: SUBTRACTION WEEK 3: MULTIPLICATION WEEK 4: DIVISION WEEK 5: SOLVING LINEAR EQUATIONS

How do humans learn from data? Learn skills in a certain order.

Learning hierarchy:

- Learning addition also helps with: subtraction, multiplication, linear equations
- Learning subtraction also helps with: division, linear equations
- And so on

LESSON PLAN WEEK 1: ADDITION WEEK 2: SUBTRACTION WEEK 3: MULTIPLICATION WEEK 4: DIVISION WEEK 5: SOLVING LINEAR EQUATIONS

Changing the order of skills makes learning harder!¹

Learn division then addition
 → students do worse

[1] Gagne. The acquisition of knowledge, 1962.

How do humans learn from data? Learn skills in a certain order.

- Learning addition also helps with: subtraction, multiplication, linear equations
- Learning subtraction also helps with: division, linear equations
- And so on

LESSON PLAN WEEK 1: ADDITION WEEK 2: SUBTRACTION WEEK 3: MULTIPLICATION WEEK 4: DIVISION WEEK 5: SOLVING LINEAR EQUATIONS

Changing the order of skills makes learning harder!¹

Learn division then addition
 → students do worse

Hypothesis: models also learn like this

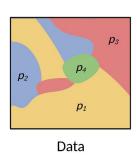
- Q: How does training data influence various model capabilities?
- Can we use this understanding to more effectively select data to improve such capabilities?

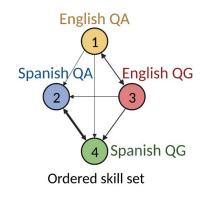
- Q: How does training data influence various model capabilities?
- Can we use this understanding to more effectively select data to improve such capabilities?

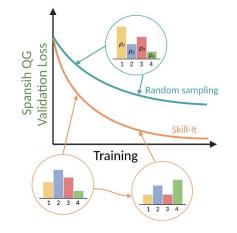
A: there exist sets of *skills* associated with data that the LLM learns most efficiently in some particular order. We can learn this order and exploit it to better select training data.

Outline

- Defining ordered skill sets
- Skill-It data selection algorithm
- Results
- Discussion







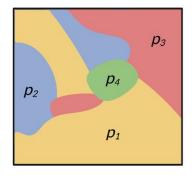
Defining ordered skill sets

Definitions: what is a skill?

Training data can be partitioned into subsets associated with skills.

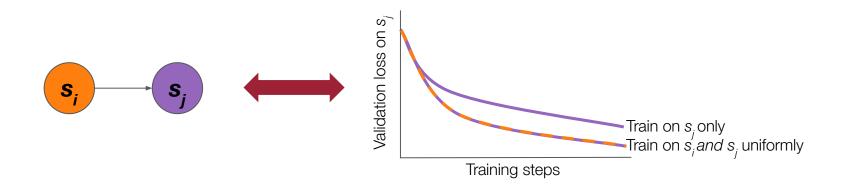
Def (informal): a **skill** s is a unit of behavior with associated data X_s s.t. if a model f is trained on dataset $D_s \subset X_s$, f has improved metric L (e.g., validation loss) on samples belonging to $X_s \setminus D_s$ on average.

Examples: tasks, data sources, task categories.



Data

Def: Given a set of skills *S*, its **skills graph** is G = (S, E), where given a fixed data/training budget, $s_i \rightarrow s_j \in E$ iff validation loss on s_j when trained on mixture of s_j and s_j is no greater than when trained on just s_j .



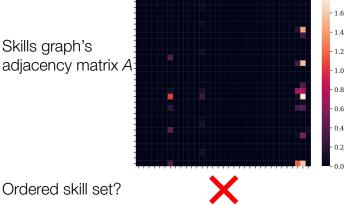
Def: an **ordered skills set** is a set of skills whose **skills graph** is neither empty nor complete.

Def: an **ordered skills set** is a set of skills whose **skills graph** is neither empty nor complete.

Dataset/skills:

Pile of Law¹/data sources

Skills graph's adjacency matrix A



Def: an **ordered skills set** is a set of skills whose **skills graph** is neither empty nor complete.

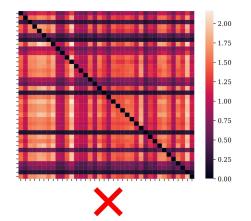
Dataset/skills:

Pile of Law¹/data sources

Skills graph's adjacency matrix A



Alpaca³/leading verb

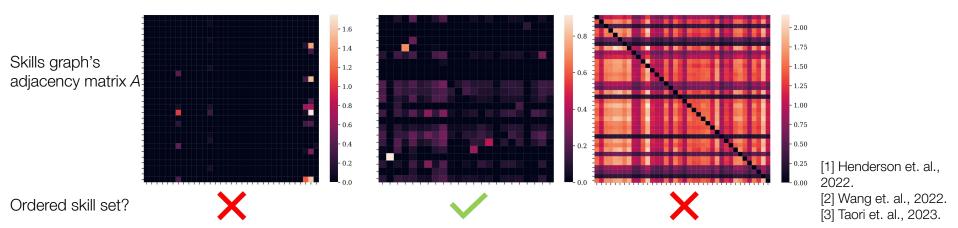


Def: an **ordered skills set** is a set of skills whose **skills graph** is neither empty nor complete.

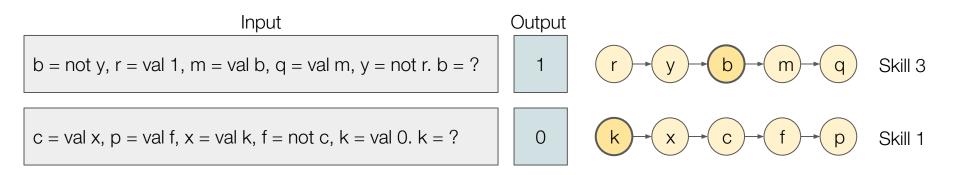
Dataset/skills:

Pile of Law¹/data sources Natural Instructions²/task categories

Alpaca³/leading verb



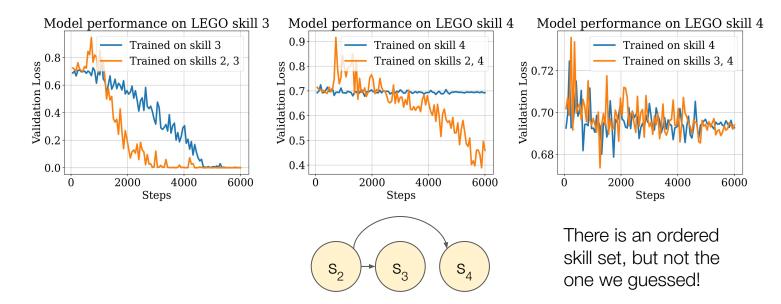
Ordered skill set examples: LEGO synthetic¹



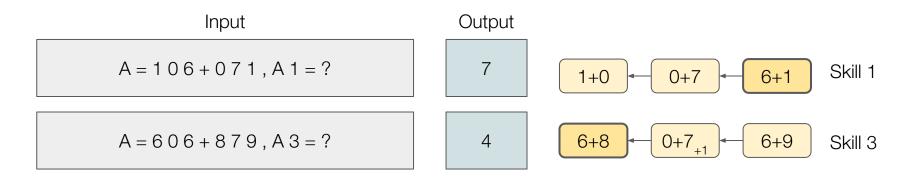
- Each sample is a series of recursive variable assignments to 0 or 1. The model is asked to provide the value of a variable.
- Skill X = model's ability to get the value of Xth variable correct
 - Skill 1 = recall only, easy
 - Skill k = need to learn skill k-1, harder
- Intuitive guess: skills graph is a "chain"

Ordered skill set examples: LEGO synthetic

- Continually pre-train GPT-Neo 125M on concatenated LEGO input/output pairs
- Measure loss on output token for held-out validation set

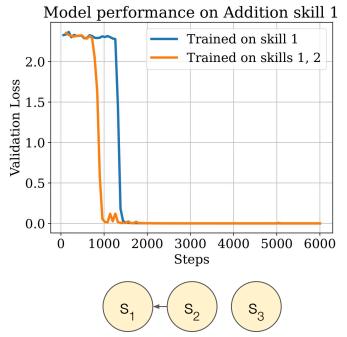


Ordered skill set examples: Addition synthetic



- Skill X = model's ability to get the Xth digit of the addition correct
 - Skill 1 = no carry, easy
 - Skill k = may need carry/dependent on skill k-1, harder
- Intuitive guess: skills graph is a "chain"

Ordered skill set examples: Addition synthetic



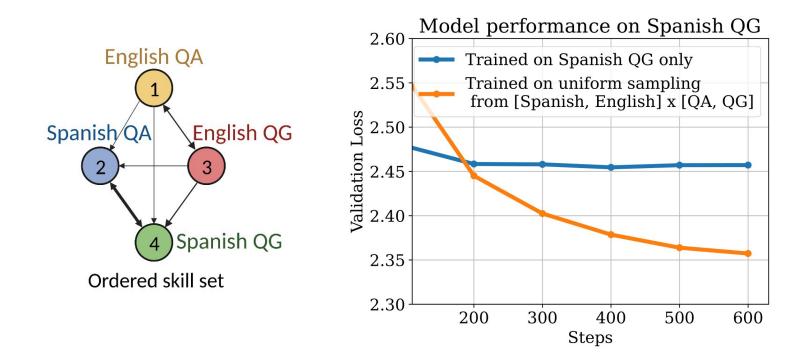
There is an ordered skill set, but not the one we guessed!

Ordered skill set examples: Natural Instructions

<u>Skills</u>

English question answering	Input: 3sat began broadcasting on 1 December 1984. What year did 3sat start? Output: 1 december 1984
English question generation	Input: Snow Wolf is an espionage novel by Glenn Meade. Output: Who wrote the Snow Wolf
Spanish question answering	Input: Que inventen ellas es el título de la muestra sobre científicas e investigadoras, que estará hasta el 4 de enero en la Obra Social de Caja Madrid, en la Plaza de Catalunya. ¿Dónde estará disponible la muestra? Output: en la Obra Social de Caja Madrid
Spanish question generation	Input: O sea, lloraba el músico. Volverá en octubre Pedrito. Volverá, ya lo verán. Volverá. Dios mío. Output: ¿Cuándo volverá Pedrito?

Ordered skill set examples: real data

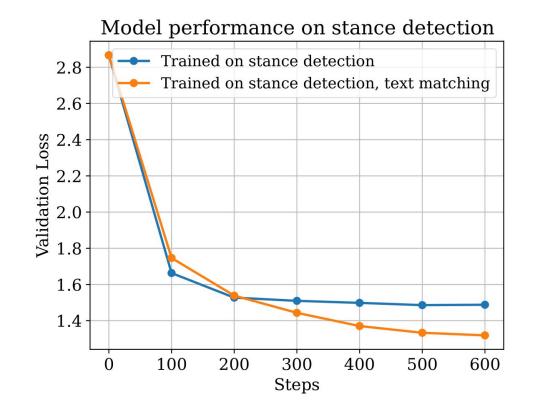


Ordered skill set examples: real data

<u>Skills</u>

Stance Detection	Input: Topic: Airport security profiling Argument: Profiling will help avoid invasive scanners and pat-downs. Output: in favor
Text Matching	Input: Sentence 1: What are considered the safest prescription pills for high blood pressure/hypertension? Sentence 2: What are the common side effects of blood pressure medications? Output: Dissimilar

Ordered skill set examples: real data



Skill-It data selection algorithm

Problem Setup

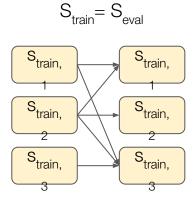
Input:

- Training skill set $S_{train} = s_{train,1}, ..., s_{train, k}$ with associated training corpus $X_{train} = X_{train,1}, ..., X_{train,k}$
- Evaluation skill set $S_{eval} = s_{eval,1}..., s_{eval,m}$ with associated held-out validation data X_{eval}
- Budget of *n* samples
- Pre-trained LLM f

Goal: how to order/select *n* samples from X_{train} for *f* to perform well on X_{eval}

We study three regimes depending on the relationship between S_{train} and S_{eval} :

We study three regimes depending on the relationship between S_{train} and S_{eval} :

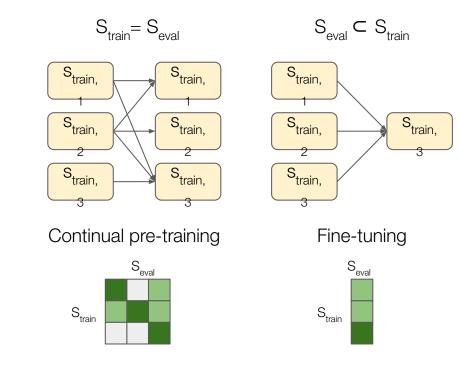


Continual pre-training

Adjacency matrix A of skills graph



We study three regimes depending on the relationship between S_{train} and S_{eval} :

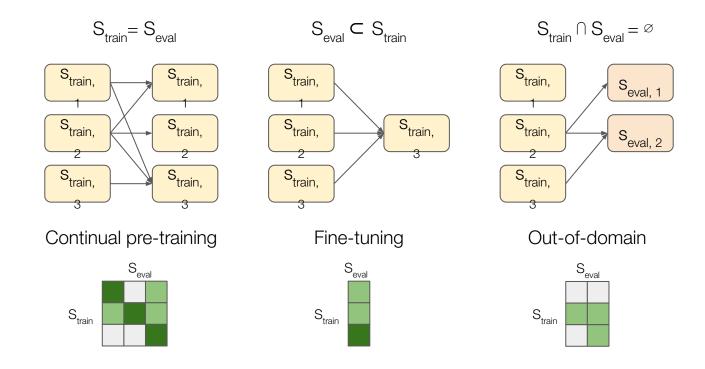


Adjacency matrix A of skills graph

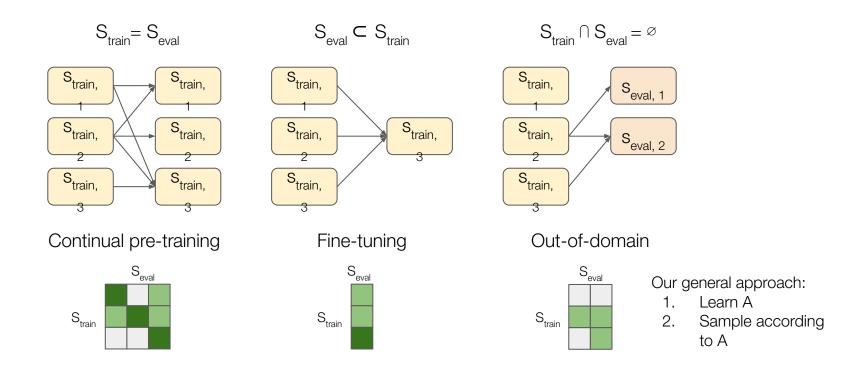
Adjacency

matrix A of skills graph

We study three regimes depending on the relationship between S_{train} and S_{eval} :



We study three regimes depending on the relationship between S_{train} and S_{eval} :



Adjacency matrix A of skills graph

Skills Graph Learning

Can follow the definition:

- For each s_i, s_j, see if validation loss on s_j is lower when trained on s_i and s_j than when trained on just s_i for the same amount of steps, H
 - Set edge weight proportional to change in loss
 - Runtime: O(Hkm)

Skills Graph Learning

Can follow the definition:

- For each s_i, s_j, see if validation loss on s_j is lower when trained on s_i and s_j than when trained on just s_i for the same amount of steps, H
 - Set edge weight proportional to change in loss
 - Runtime: O(Hkm)

We can also make this cheaper!

- Linear approximation: for each s_i, s_i, see if validation loss on s_i decreases when trained on s_i
 - Set edge weight proportional to change in loss
 - Runtime: O(Hk)
- Reduce number of steps H
- Learn skills graph using smaller model

Sampling according to Skills Graph

Def: **skill-stratified sampling** involves sampling uniform from all skills that are prerequisite for the evaluation skill set.

•
$$S' = \{s_{train,i} \text{ if } \exists j \text{ s.t. } (s_{train,i}, s_{eval, j}) \in E\}$$

•
$$Pr(s_{train, i}) = 1/|S|$$
 if $s_{train, i} \in S'$

Drawbacks: does not exploit skills graph dynamically - even after a skill is learned, we do not adjust skill proportions

Formulate data selection as online optimization problem:

• *T* rounds: at each round *t* we sample n/T samples from X_{train} according to $p_t \in \Delta^{k-1}$ over the training skill set

Formulate data selection as online optimization problem:

- T rounds: at each round t we sample n/T samples from X_{train} according to $p_t \in \Delta^{k-1}$ over the training skill set
- Let f_t be model at round t, with learning dynamics expressed as $f_t = \Phi(f_{t-1}, p_{t-1})$

Formulate data selection as online optimization problem:

- T rounds: at each round t we sample n/T samples from X_{train} according to $p_t \in \Delta^{k-1}$ over the training skill set
- Let f_t be model at round t, with learning dynamics expressed as $f_t = \Phi(f_{t-1}, \rho_{t-1})$
- Let $L_{eval, j}(f_t)$ be the validation loss of f_t on $s_{eval, j}$.

Formulate data selection as online optimization problem:

- T rounds: at each round t we sample n/T samples from X_{train} according to $p_t \in \Delta^{k-1}$ over the training skill set
- Let f_t be model at round t, with learning dynamics expressed as $f_t = \Phi(f_{t-1}, \rho_{t-1})$
- Let $L_{eval, i}(f_t)$ be the validation loss of f_t on $s_{eval, i}$.
- Objective: minimize average validation loss on evaluation skills at time *T*:

$$egin{aligned} & ext{minimize} \quad rac{1}{m} \sum_{j=1}^m L_{ ext{eval},j}(f_T) \ & p_1,\ldots,p_T \in \Delta^{k-1} \quad & ext{s.t.} \ f_t = \Phi(f_{t-1},p_{t-1}) \ orall t \in 1,\ldots,T \end{aligned}$$

- Hard to solve without more constraints/information on Φ
- We think about learning dynamics in terms of how loss of model f_t depends on loss of f_{t-1} and proportions p_{t-1}

- Hard to solve without more constraints/information on Φ
- We think about learning dynamics in terms of how loss of model f_t depends on loss of f_{t-1} and proportions p_{t-1}
- Simple idea (assume $S_{train} = S_{eval}$ for now):

$$L_{ ext{eval},j}(f_t) = L_{ ext{eval},j}(\Phi(f_{t-1}, p_{t-1})) := L_{ ext{eval},j}(f_{t-1})(1 - \alpha p_{t-1}^j)$$

- Loss on *j* at time *t* is loss on *j* at time *t*-1 decreased by a factor proportional to p_{t-1}^{j} .
 - More training data from $X_{train, j} = loss goes down more$
- Does not account for skills graph

$$L_{ ext{eval},j}(f_t) = L_{ ext{eval},j}(\Phi(f_{t-1},p_{t-1})) := L_{ ext{eval},j}(f_{t-1})(1 - lpha p_{t-1}^j)$$

$$L_{ ext{eval},j}(f_t) = L_{ ext{eval},j}(\Phi(f_{t-1},p_{t-1})) := L_{ ext{eval},j}(f_{t-1})(1 - A_{:,j}^ op p_{t-1})$$

 More training data from X_{train, j} or any of j's prerequisite skills = loss on j goes down more

Derive Skill-It's update rule using online mirror descent:

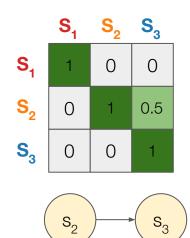
- Regularize with negative entropy (similar to multiplicative weights)
- Proportion (unnormalized) for skill $s_{train, i}$ at time t+1:

$$p_{t+1}^i = p_t^i \exp\left(\eta \sum_{j=1}^m A_{ij} L_{ ext{eval},j}(f_t)
ight)$$

- $\eta > 0$ learning rate
- Intuitively: adjust weight on skill $s_{\rm train,\ i}$ based on the losses of skills that $s_{\rm train,\ i}$ influences
 - Key assumption: more data = validation loss goes down

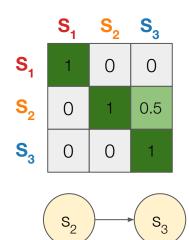
Toy example:

- k = 3 skills, $S_{train} = S_{eval}$
- Eta = 0.2
- Skills graph adjacency matrix:



Toy example:

- k = 3 skills, $S_{train} = S_{eval}$
- Eta = 0.2
- Skills graph adjacency matrix:



Validation loss

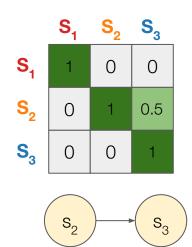
t = 0:

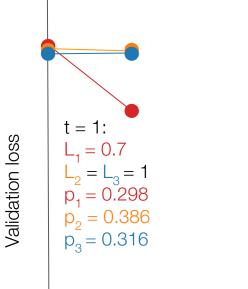
$$L_1 = L_2 = L_3 = 1$$

 $p_1 = 0.322$
 $p_2 = 0.356$
 $p_3 = 0.322$

Toy example:

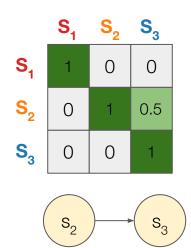
- k = 3 skills, $S_{train} = S_{eval}$
- Eta = 0.2
- Skills graph adjacency matrix:

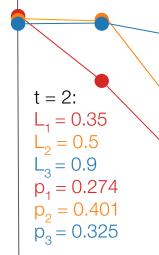




Toy example:

- k = 3 skills, $S_{train} = S_{eval}$
- Eta = 0.2
- Skills graph adjacency matrix:

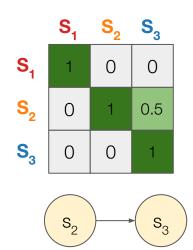


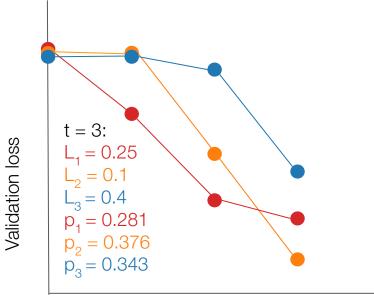


Validation loss

Toy example:

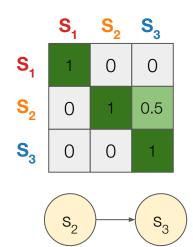
- k = 3 skills, $S_{train} = S_{eval}$
- Eta = 0.2
- Skills graph adjacency matrix:

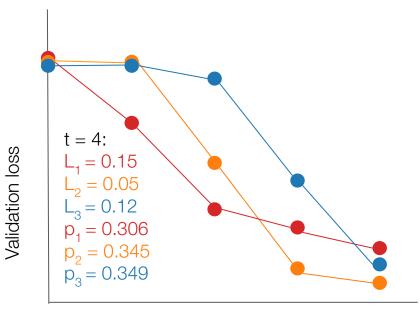




Toy example:

- k = 3 skills, $S_{train} = S_{eval}$
- Eta = 0.2
- Skills graph adjacency matrix:

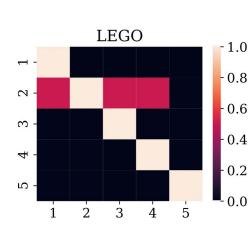


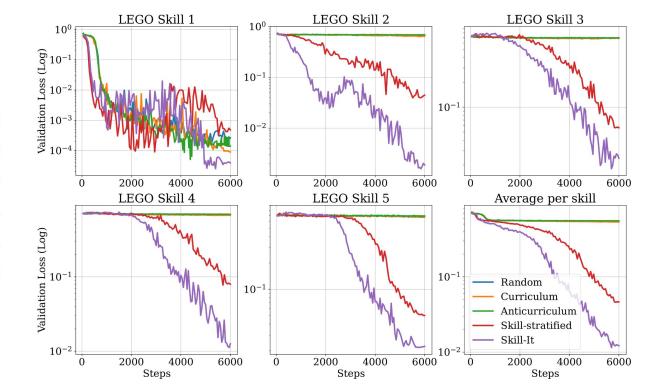


Experiments Overview

- Evaluate Skill-It and skill-stratified sampling in three settings: continual pre-training, fine-tuning, out-of-domain
- Baselines:
 - Random sampling over training corpus or target skill (for fine-tuning)
 - For continual pre-training: curriculum learning at instance level and skill level
- Model: GPT-Neo-125M
 - Experiments where we learn skills graph on 125M and use it on GPT-Neo-1.3B
 - 3B parameter model with together.ai
- Datasets:
 - LEGO
 - Addition
 - Natural Instructions (various subsets)
 - RedPajama (together)

LEGO continual pre-training results





LEGO pre-training results

	Skill 1	Skill 2	Skill 3	Skill 4	Skill 5	Average
Random	100.0 ± 0.0	54.2 ± 5.9	$58.0_{\pm 3.1}$	$48.0_{\pm 6.3}$	$54.4_{\pm 7.3}$	$62.9_{\pm 3.5}$
Curriculum	100.0 ± 0.0	60.0 ± 10.6	55.2 ± 5.8	51.2 ± 6.3	51.8 ± 6.1	63.6 ± 3.6
Anticurriculum	100.0 ± 0.0	53.4 ± 2.3	49.0 ± 4.8	48.2 ± 6.4	56.0 ± 5.7	$61.3_{\pm 2.2}$
Skill-stratified	$100.0{\scriptstyle \pm 0.0}$	98.2 ± 1.8	98.2 ± 1.3	97.8 ± 1.6	98.2 ± 1.3	98.5 ± 0.9
Skill-curriculum	$100.0{\scriptstyle \pm 0.0}$	75.2 ± 30.1	52.2 ± 3.7	51.0 ± 4.6	54.4 ± 3.1	66.6 ± 7.7
Skill-anticurriculum	$100.0{\scriptstyle \pm 0.0}$	90.2 ± 8.1	88.2 ± 8.3	73.2 ± 12.2	62.4 ± 9.4	82.8 ± 4.9
SKILL-IT	100.0 ± 0.0	99.2 ± 0.8	99.0 ± 1.0	$99.4{\scriptstyle \pm 0.5}$	99.6 ± 0.5	99.4 ± 0.2

Table 5: Results on accuracy per skill (binary classification) for LEGO pre-training experiment, averaged over 5 random seeds.

Natural instructions continual pre-training results

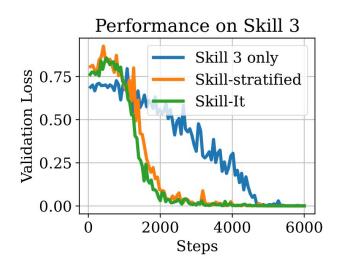
• Subset of 23 task categories (> 1M input/output pairs to select from)

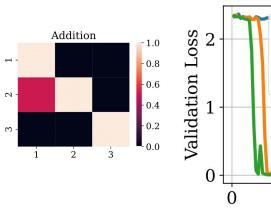
Method	Random	Curriculum	Anticurriculum	Skill curriculum	Skill anticuirrulum	Skill-stratified	Skill-it
Average val loss per skill	2.173 ± 0.028	2.307 ± 0.025	2.366 ± 0.026	2.304 ± 0.031	2.317 ± 0.052	2.115 ± 0.027	2.103 ± 0.032

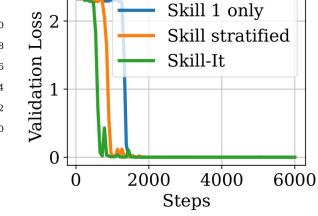
LEGO and Addition fine-tuning results

LEGO:
$$S_{eval} = S_3$$

Addition:
$$S_{eval} = S_1$$

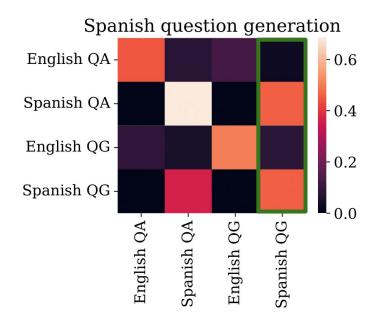


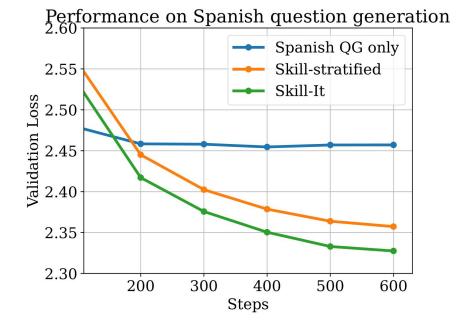




Natural Instructions fine-tuning results

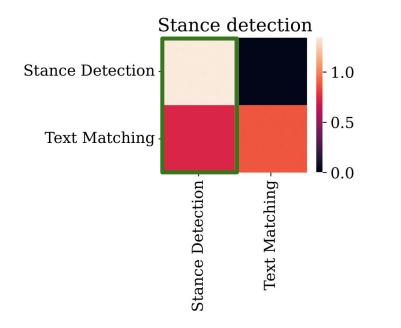
Spanish Question Generation

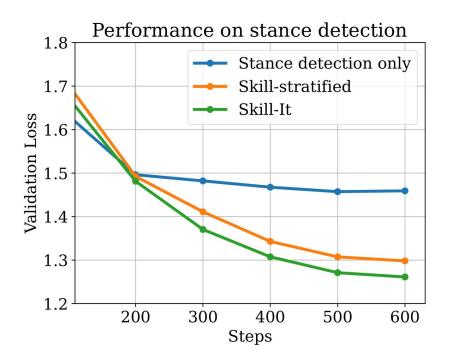


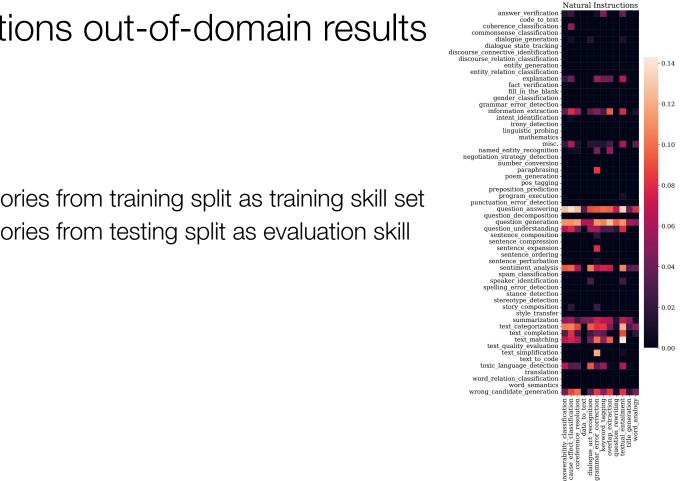


Natural Instructions fine-tuning results

Stance Detection





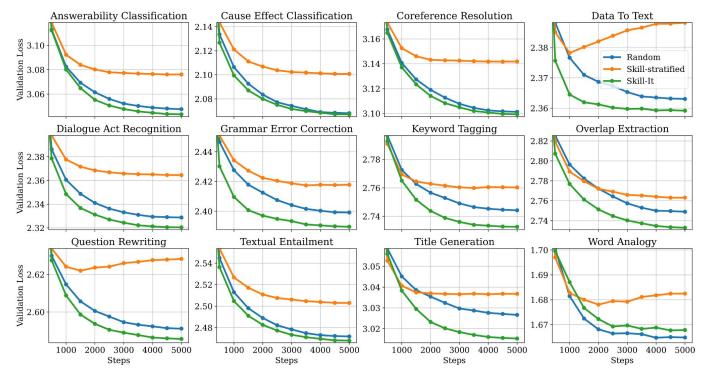


Natural instructions out-of-domain results

- Use 59 task categories from training split as training skill set
- Use 12 task categories from testing split as evaluation skill set

Natural instructions out-of-domain results

Skill-It outperforms baselines on 11/12 task categories

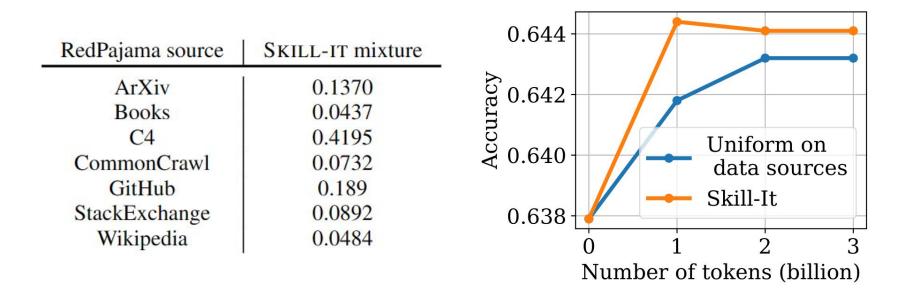


Large-scale case study: RedPajama¹

- Training skill set: RedPajama's data sources (ArXiv, Books, C4, CommonCrawl, GitHub, StackExchange, Wikipedia)
- Evaluation skill set: Language Model Evaluation Harness² (ARC Challenge, Bool Q, Copa, HellaSwag, LAMBADA, PIQA, Winogrande)
- Continually pre-train a 3B parameter model already trained on 1T tokens for 3B additional tokens
- Set T = 1 (one round/static p_{t})

Together, 2023.
 Gao et. al. A framework for few-shot language model evaluation, 2021.

Large-scale case study: RedPajama

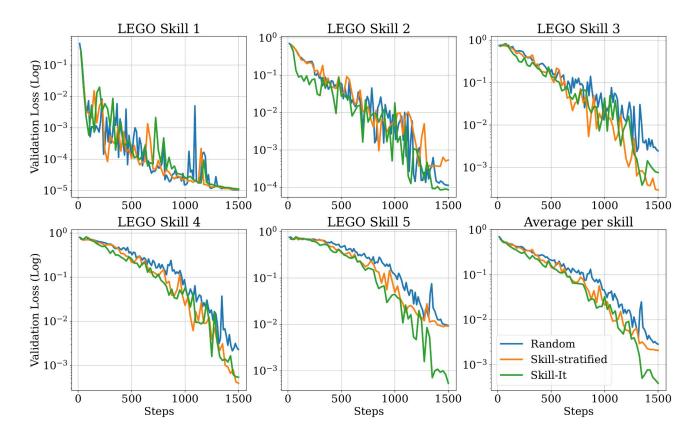


Transfer experiments

Can we learn the skills graph on a smaller model and use it on a larger model?

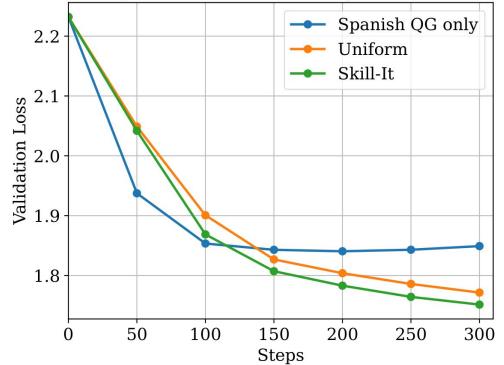
- Smaller model: GPT-Neo-125M
- Larger model: GPT-Neo-1.3B

Transfer experiments: LEGO continual pre-training



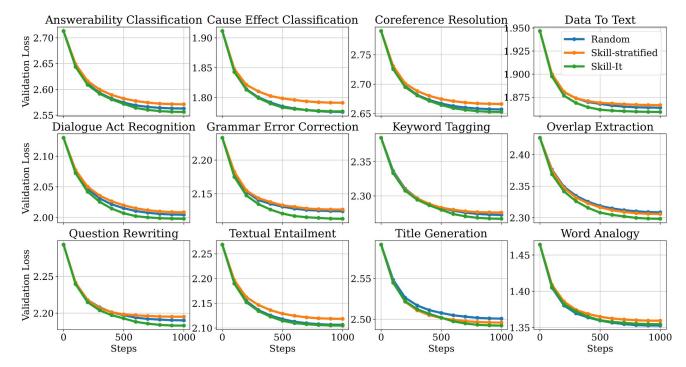
Transfer experiments: Natural Instructions fine-tuning

Targeted learning of Spanish question generation (125M -> 1.3B)



Transfer experiments: Natural Instructions out-of-domain

Skill-It outperforms baselines on 10/12 task categories.



Summary

- Given a fixed budget, we want to know what data to train on in order to induce various capabilities in an LM
- We introduce a skills-based framework for understanding how LMs learn and for selecting training data
 - There exist ordered skill sets in the data that the model learns most efficiently in some particular order
 - We propose skill-It, an online algorithm for sampling from skills that uses the skills graph

Discussion

- The definition of skills and skills graph: intuition is not always correct!
- "Are skills just [tasks/data sources/etc.]?"
 - Not always. Skill are a **model-centric** concept
 - Bad set of candidate skills → empty or complete skills graph, Skill-It won't offer much gain in performance
 - **Discovering ordered skill set from data is hard** (see next slide).

Discussion

- The definition of skills and skills graph: intuition is not always correct!
- "Are skills just [tasks/data sources/etc.]?"
 - Not always. Skill are a **model-centric** concept
 - Bad set of candidate skills → empty or complete skills graph, Skill-It won't offer much gain in performance
 - **Discovering ordered skill set from data is hard** (see next slide).
- "Can we use something simpler to get the skills graph?"
 - Edges are not always obvious (for example, LEGO)
 - Why does LEGO skill 2 help skill 3 and 4 while skill 3 does not help skill 4?
 - Tried using distances in embedding space/EMD, extremely noisy

Discussion

- The definition of skills and skills graph: intuition is not always correct!
- "Are skills just [tasks/data sources/etc.]?"
 - Not always. Skill are a **model-centric** concept
 - Bad set of candidate skills → empty or complete skills graph, Skill-It won't offer much gain in performance
 - Discovering ordered skill set from data is hard (see next slide).
- "Can we use something simpler to get the skills graph?"
 - Edges are not always obvious (for example, LEGO)
 - Why does LEGO skill 2 help skill 3 and 4 while skill 3 does not help skill 4?
 - Tried using distances in embedding space/EMD, extremely noisy
- How to improve the Skill-It algorithm
 - Graph is *dynamic* and needs to be updated how much can we do on the fly?

Future work: skills discovery

- Can we discover skills by clustering?
- Task: recover LEGO skills by clustering:
 - Embeddings
 - Gradients in progress
 - Validation losses across multiple training runs
 - Points that have the same shifts/behaviors in validation loss as a function of training data tend to belong to the same skill

Cluster method	Accuracy
Pretrained embedding of last token	24.8 ± 0.5
Pretrained embedding of average token	25.2 ± 1.1
Trained model embedding of last token	38.4 ± 0.8
Sentence-BERT embedding	23.9 ± 0.7
Losses over multiple runs	61.0 ± 1.6

Thank you! Questions?

Contact: mfchen@stanford.edu

ArXiv: https://arxiv.org/abs/2307.14430

