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Abstract

Labeling data for modern machine learning
is expensive and time-consuming. Latent
variable models can be used to infer labels
from weaker, easier-to-acquire sources oper-
ating on unlabeled data. Such models can
also be trained using labeled data, presenting
a key question: should a user invest in few
labeled or many unlabeled points? We an-
swer this via a framework centered on model
misspecification in method-of-moments la-
tent variable estimation. Our core result is
an exact bias-variance decomposition of the
generalization error, which shows that the
unlabeled-only approach incurs additional
bias under misspecification. We introduce a
correction that provably removes this bias in
certain cases. We apply our decomposition to
three scenarios—well-specified, misspecified,
and corrected models—to 1) choose between
labeled and unlabeled data and 2) learn from
their combination. We observe theoretically
and with synthetic experiments that for well-
specified models, labeled points are worth a
constant factor more than unlabeled points.
With misspecification, their relative value is
higher due to the additional bias but is re-
duced with correction. We also apply our
approach to study real-world weak supervi-
sion techniques for dataset construction.

1 Introduction

A key challenge in data-driven fields is the quality of
training data. A fixed data collection budget can pro-
vide a large amount of incomplete training data, or a
smaller but cleaner dataset. Given a choice between
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these two options, which should we select and which
factors should determine this decision? This question,
while fundamental, is especially relevant to modern
machine learning, where vast amounts of unlabeled
data is available. To exploit this without extensive
hand-labeling, powerful techniques relying on latent
variable models—in particular, method-of-moments—
have been developed to generate labels.

Latent variable method-of-moments has been used to
learn topic models (Anandkumar et al., |2014)) and
parse trees (Hsu et all |2012), to evaluate crowdwork-
ers (Joglekar et all [2013), and to generate training
datasets (Ratner et al.l [2019; [Fu et al., |2020). In
these models, the outputs of sources—variables with
some relation to the label—are observed and used to
infer the latent variable. The core challenge is to learn
the correlations (i.e., accuracies) between the sources
and the unobserved label variable, which parametrize
the model used to generate labels. Here, method-
of-moments relies on decomposing multiple observ-
able statistics based on independence among sources.
When some labeled data is available, this setup also
allows for the accuracy parameters to be directly esti-
mated . Therefore, given a limited budget,
a principle for choosing between labeled and unlabeled
data is crucial, motivating a theoretical framework to
understand the relative value between them.

Unmodeled dependencies among sources—a form of
model misspecification—are common and yield incon-
sistent accuracy estimates, which in turn yield poor
inferred labels. This affects the value of data produced
with latent variable methods, so misspecification must
play a role in our framework. While the question of
how to analyze misspecification has been studied in
classical statistics, the focus is on estimator asymp-
totics (Kleijn and van der Vaart, 2006| [2012). Our
main challenge, however, is to analyze and understand
misspecification for both parameter estimation and la-
bel inference in the finite—and often small—sample
setting.

We theoretically analyze the two alternatives in la-
tent variable methods. In both cases, the output is a
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Figure 1: Latent variable methods (e.g., method-of-moments) can infer an unobserved variable (Y') by learning the

accuracies of correlated sources (Aq, ..

., A4). This is done either from unlabeled data or directly from a small amount of

labels; we seek a framework to explain the relative value of these choices. A major challenge are unmodeled dependencies
between sources (red). Latent variable models have numerous applications.

joint distribution for the latent variable and observ-
able sources. For the inputs, the choices are either ny,
labeled or ny unlabeled points (and the outputs of m
sources). We examine misspecification in the form of
unmodeled pairwise dependencies, giving a generaliza-
tion error analysis for method-of-moments latent vari-
able model performance of the two alternatives. We
present a bias-variance decomposition of the general-
ization error, which for both the labeled and unlabeled
data cases consists of (i) irreducible error, (ii) variance,
and (iii) bias due to model misspecification at inference
time. An important consequence is that for unlabeled
data, we incur an additional (iv) standing bias due to
incorrectly estimating accuracies that scales with the
extent of misspecification, O(d/m) for m sources and
d unmodeled dependencies among them.

Next, we turn to correcting this standing misspecifica-
tion bias. In particular, a simple median approach
is able to produce consistent estimators given that
d = o(m?) and sufficient amounts of unlabeled data.
Therefore, in certain cases, the bias O(d/m) from mis-
specification can be completely eliminated. This cre-
ates three scenarios to consider for our framework:
well-specified (i.e. no unmodeled dependencies), mis-
specified, and corrected settings, depicted in

We give two applications of our theoretical framework
for the three scenarios. First, we develop a criterion,
the data value ratio, for choosing between labeled and
unlabeled data., which is based on the relative mini-
mum amount of labeled points needed to perform as
well as a fixed amount of unlabeled points in terms of
generalization error. For well-specified models, labeled
data is a constant factor more valuable than unlabeled,
but for misspecified models the value grows linearly in
d and ny. Furthermore, corrected models are able to
improve the value of unlabeled data. Second, we com-
bine the estimated parameters from the unlabeled ap-
proach, which are biased, with ones from the labeled
approach—in certain cases outperforming either indi-
vidually. We validate our framework with synthetic

experiments, verify the scaling of our generalization
error and data value ratio, and the performance of the
combined estimator across the three settings.

An important real-world application of our results on
latent variable methods are weak supervision (WS)
frameworks, in particular data programming (Ratner
et al} [2016), used in a huge range of products and sys-
tems across industry and academia. WS frameworks
construct datasets without ground-truth annotations
by using unlabeled points and distant or weak sources,
such as heuristics (Gupta and Manning), 2014)), ex-
ternal knowledge bases (Mintz et al., |2009; |Craven
and Kumlien, |1999; Takamatsu et al., |2012), or noisy
crowd-sourced labels (Karger et al.l 2011} [Dawid and
Skene, 1979)). Data programming encompasses many
such prior approaches, and has shown excellent re-
sults with the method-of-moments approach (Fu et al.|
2020)). We perform a real-world WS case study, where
ground-truth source dependencies are not known, but
sources are likely to be correlated to some extent. We
observe that the relative value of labeled data is large,
but the value of unlabeled data can be increased via
our median approach. With equal amounts of data,
the Fl-score of a baseline unlabeled approach is 64.81
and the score of a labeled approach is 71.79, but
the score of an unlabeled approach with correction is
68.12. This suggests that our theoretical explanation
of the effects of misspecification can account for some
of the behavior of models on real data.

2 Related Work

Misspecification in Graphical Models The
asymptotic effect of misspecification on parameter esti-
mation is studied by [Kleijn and van der Vaart| (2012),
extending the Bernstein-Von Mises theorem to cases
where observed samples are not of the parametric dis-
tribution being estimated. However, their main results
do not fully extend to method-of-moments estimators.
Other analyses of model misspecification directly ex-
amine families of models, such as|Jog and Loh| (2015)’s
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lower bound on KL-separation of Gaussian graphical
models. While this bound is important for modeling
errors in inference, it does not illustrate our additional
error in parameter estimation. More generally, works
on misspecification either study a particular class of
techniques (De Blasi and Walker, 2013)) or a particular
model and propose repairs (Griunwald et al., [2017)—
while we compare effects on alternative datasets.

Structure Learning One way to reduce misspecifi-
cation is to produce a more refined model. Graphical
model structure learning aims to do so in both the su-
pervised (Ravikumar et al.L[2011} Loh and Wainwright|
2013) and unsupervised cases (Chandrasekaran et al.,
2012 [Meng et al.| |2014; Bach et al.l 2017 |[Varma et al.|
2019)). However, these works present computational
challenges, require (often strong) conditions to hold,
and do not analyze the downstream impact of errors.
Our approach instead focuses on understanding the
impact of errors and is applicable to partial recovery
that often results from structure learning.

3 Background and Problem Setting

We start with background on latent variable models
and introduce the model we analyze. We explain the
stages—learning accuracies and inferring labels—for
both the labeled and unlabeled cases, and conclude
with model evaluation and key challenges.

Setup In latent variable models, a number of sources
are observed and used to infer the latent variable. The
input is usually ny unlabeled data points, but in our
setting we also consider a small labeled dataset of nj,
samples. The output is a large, labeled dataset.

Let X €¢ XY and Y € Y = {-1,1}. We consider
an unlabeled dataset XU = {2V "Ul and a labeled
dataset (Xp,Y7) = {(zF,yl)}t, drawn from the dis-
tribution of (X,Y’). There are m sources, each out-
putting a value in {—1,+1} via a deterministic func-
tion A; : X — Y for all j € [m]. Our goal is to use
the outputs of A, the vector of sources, to construct a
model to infer Y.

To infer Y, we learn the model Pr(Y,A) and then
marginalize to produce soft labels 7; := 2Pr(Y =
1A = X(z;)) — 1 € [-1,1] for each x; by applying the
m sources to Xy and (X1, Yr). The overall approach
has two steps: (i) learn the latent variable model (us-
ing labeled or unlabeled data), and (ii) infer labels g;.

Theoretical model We pick a simple model that
captures many latent variable model settings and still
presents all of the challenges for comparing between
the types of data. We assume an Ising model for
Pr(Y,A); the only difference between the labeled and

unlabeled setting is that Y is latent in the latter. The
set of canonical parameters is ©, and the dependency
graph is G = (V, E), where V = Y U X and E con-
sists of edges from Y to the sources as well as the d
edges among the sources, E. The lack of an edge in
G between a pair of variables indicates independence
conditioned on a separator set (Lauritzenl [1996)), so
the true distribution can be modeled as

1 m
Pr(Y,A) =  exp (oy +3 0y + Y 01-in)\]-),
i=1 (i,7)EEX

with cumulant function Z. For cleaner presentation,
we assume © > 0 (no sources that disagree with others
or Y on average) and E) is sparse enough such that
deg(\;) < 2 for all \; (each source is conditionally
dependent on at most one other source). This leads to
model misspecification when edges are unknown.

Inference The label is computed using a naive
Bayes approach that assumes all sources are condi-
tionally independent with E = (:
Pr(Y = 1|A = A\(X))
I P = M(X)|Y = 1) Pr(Y = 1)
Pr(A = A(X))

(1)

where the class balance Pr(Y = 1) is assumed to be
known, Pr is an empirical probability , and Pr indi-
cates an estimated probability resulting from the pa-
rameter estimation step described below. In practice,
the conditional independence assumptions required for
may not hold, but dependencies among sources are
often unknown. Therefore, conditional independence
is assumed, and we may suffer from misspecification in
inferring our probabilistic labels.

Learning parameters with method-of-moments
For the labeled dataset, we estimate Pr(\; =
N(X)Y = 1) in directly from samples, as Y is
observed.

For the unlabeled dataset, we use the method-of-
moments estimator from |Fu et al.| (2020), which relies
on the property that if A\; L A\;|Y, then \;Y L \;Y.
This implies that E [\Y] - E[A;Y] = E [A;Y2?] =
E [A;A;], which is directly estimable. Define a; :=
E [\;Y] as the unknown accuracy of X;. If we can in-
troduce a third A\ that is conditionally independent of
A; and Aj, we have a system of equations that can be
solved using observable statistics. We use this triplet
method to recover these accuracies: we choose two A;,
A, at random for each )\; and solve up to sign:

- AA >\>\
@M = ] ERANTE Pkl | (2)
>\>\k
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Figure 2: Latent variable models with unmodeled dependency (red edge), leading to misspecification. Boxes indicate
observable variables used for accuracy estimation. Left: model with access to label Y. Pairs (\;,Y) directly estimate
source accuracy. Center: latent model with unobserved Y. Triplet (red) includes unmodeled dependency, leading to
inconsistent estimation. Right: Corrected model using medians. Triplet excludes the dependency, returning to consistency.

where E is an empirical estimate of the expectation.
We use the estimated @Y := 'dgj ") to directly compute
Pr(\; = #1|Y = 1) for (1). However, random \; and
Ar may not satisfy conditional independence, and thus
we incur error in estimating accuracies due to misspec-
ification in a way unique to the unlabeled setting. We

aim to capture this error in our evaluation.

Evaluating the model We define the model’s gen-
eralization error as R = Ey,x) - [I(Y,Y)] where ex-
pectation is taken over the distribution of (Y, ), N
(the random dataset used), and 7 (the algorithmic ran-
domness, i.e. the triplets used in method-of-moments).
{(-,-) here is the cross entropy loss, [(¥;,y:)
—uog Pr(Y = 1A = A(zy)) — S¥ logPr(Y =
—1|A = A(«;)). Let Ry denote the error for the un-
labeled dataset and Ry, for labeled.

4 Theoretical Results

We theoretically analyze the quality of the latent vari-
able model, taking into account the impact of misspec-
ification when using unlabeled versus labeled data. In
[4.1] we give an exact decomposition of the generaliza-
tion error of the latent variable model, which demon-
strates how misspecification is present in both the
parameter learning and inference steps of the model
when data is unlabeled and only present in the latter
when data is labeled. In we bound the generaliza-
tion error using this framework to show how the unla-
beled case has an additional standing bias of O(d/m).
Given this standing bias, in[£.3] we introduce a simple
method that under certain conditions can correct for
dependency-based misspecification. We analyze this
correction’s impact on generalization error.

4.1 Decomposition Framework

Our first result is a decomposition of the generalization
error into four components. The last two components,
the inference bias and parameter estimation error, re-
flect the role of misspecification.

Theorem 1. The generalization error has the follow-

ing decomposition:

E [U(¥,Y)] = HY]A) — Ex [Di(Pr(VI[Pr(V)] +
——

Trreducible error Observable sampling noise

Z I(\is Aj]Y) +ZEY,N,T {DKL(PTMYHISI”MY)}?

i=1

(4.5)€Ex Inference bias g .
Parameter estimation error

where I(Ai; A;|Y) is the conditional mutual informa-
tion between sources and H(Y|A) is conditional en-
tropy. Pr refers to the true data distribution, while Pr
and Pr refer to the estimated probabilities in .

We now discuss each term above. The first two terms
are independent of misspecification and are present in
both the unlabeled and labeled cases:

e Irreducible error: an intrinsic property of the dis-
tribution of (Y, A) always present in bias-variance
decomposition.

e Observable sampling noise: the expected KL di-
vergence between the true marginal distribution
of the observable sources and the empirical distri-
bution. Particular to our inference approach, it
is a common notion of sampling noise (Domingos|
2000; [Yang et al., |2020) and approaches 0 asymp-
totically.

For the last two terms, misspecification plays a differ-
ent role depending on the data type.

e Inference bias: the conditional mutual informa-
tion among dependent sources. Particular to our
inference approach, it is the approximation error
of using marginal singleton probabilities rather
than their product distributions. Therefore, it
represents the role of misspecification at the infer-
ence step and is present for both data types. It
is independent of parameter estimation method.

e Parameter estimation error: the difference be-
tween the true and estimated distribution of A;|Y".
For the labeled approach, this error corresponds
to sampling noise and asymptotically approaches
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0. For the unlabeled approach, it directly de-
pends on the estimation error of accuracies in
. However, these estimators are biased, as are
many method-of-moments approaches. Further-
more, misspecification makes the estimators in-
consistent when A;, A\;, and A used to produce
”dl(] ®) are not pairwise conditionally independent.
We now discuss in detail the scaling of these last two
terms, which highlights the tradeoff between labeled
and unlabeled data under misspecification.

4.2 Scaling of the Generalization Error

We bound the terms in Theorem [l to understand the
scaling of error due to misspecification in both the
unlabeled and labeled cases. Since the irreducible
error is always present, we bound excess generaliza-
tion error, defined as R§ = Ry, — H(Y'|A) for labeled
data and similarly Rf, for unlabeled data. We use
Br = > I(A\i;A\j|Y) for the inference bias in these
bounds since it is independent of our two cases, and
while it scales in d, it is simply a measurement over
the true data distribution. We present upper bounds
here and a lower asymptotic bound in the Appendix.
We first bound R .

Theorem 2. Suppose that there are |Ey\| = d unmod-
eled dependencies. When we use the latent variable
model described in section [3 with ny, labeled samples,

RS < ™ 4 Br+o(1/ny). (3)
2nL

In this bound, ﬁ is an upper bound on parame-
ter estimation error. It represents the sampling noise
of al = E [A\;Y], which asymptotically approaches 0.
Therefore, the only standing bias is B; due to infer-
ence approach. When there is no model misspecifica-
tion, the excess error is O(1/ny), and thus for large np,

our generated labels would eventually follow the true
Pr(Y|A).

We next present an upper bound on the excess gen-
eralization error in the unlabeled case. Define ¢;; =
E XAl — E[NY]E [AY] as the extent of misspecifi-
cation on a single pair of sources, and let 0 < e, <
€ij < Emax for all pairs (7, ) under our model assump-
tions in section The exact value of ;; in terms of
canonical parameters is in the Appendix.

Theorem 3. Suppose that there are |E\| = d depen-
dencies. When we use the latent variable model de-
scribed in section [3 using ny unlabeled samples,

C1d Co C3d
Rf <emax | — 4
U_ea(m—i—\/nU_'—an) )
cq4m

+— + By +o(1/ny),
ny

where c1,ca2,c3, and cq4 are constants depending on the
intrinsic quality of the sources (Appendizx).

In this bound, we again have an observable sampling
noise Cégl, where the difference in the constant term
comes from estimating E[\;\;] in rather than

E[A\;Y] in the labeled approach. However, here the
parameter estimation error has an additional term

Best = Emax (% + = 63‘2) which depends on

nu mn

misspecification. Therefore, asymptotically the un-
labeled approach has a standing bias bounded by
Clde%—l—lﬁ; in comparison to the labeled case’s By, and
the finite sample regime contributes additional sam-
pling noise for the unlabeled approach that scales in
Emax- 10 the case of no misspecification (d = 0, epax =
0), the only term present is ‘34;", so our latent vari-
able model would also approach the true distribution

of Pr(Y|A) but at a different rate.

Partial Recovery Our result holds almost exactly
for the partial recovery case, where d’ out of d depen-
dencies are recovered via structure learning or some
other approach, and our method in avoids choos-

ing dependent sources. In particular, the additional
(d—d")emax

estimation error now scales at rate ~———5

4.3 Correcting for misspecification

How can we reduce the penalty for dealing with such
unrecovered dependencies? We examine how to reduce
misspecification for our estimator described in (2,
but our correction can be applied to other method-of-
moments approaches (Anandkumar et al.l [2012; |Cha-
ganty and Liang] |2014]), discussed in Appendix.

In our estimation approach, if there exists an \; such
that there are no Aj;, A where all three sources are
pairwise conditionally independent given Y, then it
is not possible to learn a;. In less demanding cases,
we suggest an alternative approach based on medians.
Recall that misspecification impacts accuracy estima-
tion error because random triplets that violate pair-
wise conditional independence are selected to compute
our @Y. To reduce this impact, we estimate each a; by
computing the median accuracy over all pairs A;, Ag
using a total of (m;l) times.

Proposition 1. Leta = median({agj’k) Vi, k#£i}).
Then aM is not affected by misspecification and is thus

(m—1)(m—2)
< 4

a consistent estimator if m > 5, d , and

ny > no, where ng is w(1/e2;,).

M — a;)?] as the rate of con-

Refer to py,,, = max; E [(a]
vergence for aM. Under these conditions, the excess
generalization error R§; from using ny unlabeled sam-

ples and a corrected model is, for constant c,,

RS < cpmppn, + Br+o(1/ny) (5)
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Figure 3: Excess generalization error vs. log(n) with dif-
ferent estimators for synthetic data. Left: comparison of
unlabeled data performance under the three discussed set-
tings. Right: comparison of labeled data performance for
well-specified and misspecified models. A dashed line repe-
senting an empirical “Br” suggests how inference bias is
present in both data cases.

While p can be analyzed in detail as a variant
of the medians-of-means estimator, we stress that
limy,, 00 pn, = 0. Thus the standing bias of or-
der O(d/m) due to misspecification can be elimi-
nated. This reduction has significant implications for
the value of labeled vs. unlabeled data in corrected
settings.

4.4 Synthetic Experiments

We validate the fundamental principles of our theo-
retical framework using synthetic data. We measure
the excess generalization error vs. log(n) in the well-
specified, misspecified and corrected settings on syn-
thetic data with m = 10 sources, accuracies drawn
uniformly from [.55,.75] and extents of misspecifica-
tion fixed at e = 0.1. To approximate expected excess
generalization error for each n, we average results over
1000 samples. A more detailed protocol for synthetic
experiments is available in the Appendix. Our results
are in With no misspecification (d = 0)
the labeled and unlabeled estimators both tend to-
wards zero. Under misspecification (d = 5), we see
that learning from unlabeled data results in an addi-
tional standing bias that parallels Bes;. Median aggre-
gation reduces this bias and results in error converging
to roughly similar values, paralleling B;, in both the
unlabeled and labeled cases. These observations are
consistent with our theoretical findings.

5 Applications

Based on our generalization error framework, we now
have a rigorous way to analyze misspecification in la-
tent variable models. We examine two practical ap-
plications of our theoretical results in three settings—
well-specified, misspecified, and corrected.

e Understanding the value of labeled data: we
address our motivating question about the value
of labeled data—is a few labeled samples or many

unlabeled samples better? This decision depends
on the misspecification parameters (d, emax), and
Ny versus nyp,.

¢ Combining labeled and unlabeled data: we
show how simple linear combinations of the esti-
mators can improve generalization error bounds
over using one or the other. Then, we suggest
a James-Stein type estimator from |Green et al.
(2005)), which combines an unbiased estimator
with biased information, to easily determine the
weights of the linear combination.

5.1 Understanding the value of labeled data

We use our analysis from section [4.2)to develop a crite-
rion for deciding between labeled and unlabeled points.
Compute

a(ny) = min_s. t. R§(ng) < RE(ny),
nr €N

and define V(ny) = ny/a(ny) to be the data value
ratio. The intuitive idea here is to compare, for each
amount of unlabeled data ng, what factor less labeled
data we would require to produce an equivalent er-
ror bound. We consider an approximation of the data
value ratio V' (ny) based on our upper bounds for ex-
cess generalization error in[£.2] We examine the differ-
ences in V(ny) for our three aforementioned settings:

o Well-specified setting: comparing excess risk
when d = 0 and e = 0 reduces to examining
7= and 2. Thus V(ny) = 2¢4 and our frame-
work suggests that labeled data is only a constant
factor more beneficial than unlabeled data.

e Misspecified setting: V(ny) will capture the

tradeoff between 52 and Begt + % We find that

2ny,

V(ny) = 2emax (% g VAT +%‘) + 2¢4.
That is, the value of labeled data increases lin-
early in the amount of unlabeled data and mis-
specification due to the standing bias in the gen-
eralization error for the unlabeled approach.

e Corrected setting: under our conditions from
Proposition [I} we examine the difference between

and ¢,mpn,,, and thus V(ny) = 2nycppn, -

m2

2z 5
Since py,, converges to 0, V(ny) is sublinear in
ny, showing that the corrected model increases
the relative value of unlabeled data.

Synthetic Experiments We measure V(n) in well-
specified, misspecified and corrected settings on syn-
thetic data with the same setup as previously dis-
cussed. Our detailed protocol for approximating V' (n)
is in the Appendix. We present the results in
In the well-specified case (d = 0), V(n) is small (less
than 5) and roughly constant across n. Under mis-
specification however, the data value ratio grows with
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Figure 4: Data value ratio vs. n, using both the standard
method-of-moments approach and the corrected approach,
which aggregates results over triplets using medians. Note
that d = 0 represents the well-specified setting.

both d and n albeit much more slowly for the corrected
setting, aligning with our theoretical findings.

5.2 Combining labeled and unlabeled data

While we now have a criterion to choose between
datasets, how do we combine information from both?
We examine ways to combine the accuracy parame-
ters, namely aU as defined in for unlabeled data
and an equivalent a% := E[AY] for labeled data. Re-
call that a” is unbiased, while @V is both biased and
inconsistent.

First, we consider a simple linear combination,
a(a) = aa’ + (1 — a)a” for some a € [0,1]. Us-
ing our framework in |1 we can derive similar upper
bounds on excess generalization error when the estima-
tor is a'™(a). We summarize our findings across the
three settings below, where for the corrected setting
we consider aa™ + (1 — a)ar.

e Well-specified setting: the upper bound on excess
generalization error using @', ignoring B; and
lower order terms, is ag%—i—(l—a)Q%. One can
easily verify that there exists an « € (0,1) that
minimizes this upper bound. Since ny is usually
much larger than ny, plugging in this optimal «
shows that this new upper bound is roughly of the
same order as the unlabeled case.

e Misspecified setting: the upper bound is a cubic
polynomial in a. We find that the standing bias
results in a generally lower optimal o and sug-
gests that a combined estimator can yield an up-
per bound much smaller than that for the unla-
beled case.

e Corrected setting: the upper bound now consists
of a®c,mpn, + (1 — a)?52. As a function of a,
this differs from the well-specified setting’s expres-
sion only in constant coefficients, so this again
suggests an optimal a € (0,1) and performance
roughly similar to the unlabeled case.

In practice, we do not know the exact « that optimizes

Well-specified Setting Misspecified Setting

AN
§

Corrected Setting

\

\
D ——

—— Labeled Only

0.030 Unabeled Only (ny = 1000)
~— Green (2005)

0.025 ~—— Optimal Combination

3 0.020
&
0.015

0.010

100 120 140 160 180 200 100 120 140 160 180 200 100 120 140 160 180 200
n n ne

0.005

Figure 5: Excess generalization error for an optimally
weighted combination of labeled and unlabeled estima-
tors, and a combination weighted according to|Green et al.
(2005)) across the well-specified (left), misspecified (center),
and corrected (right) settings. The number of unlabeled
points is fixed at ny = 1000.

generalization error. However, there is vast literature
on combined estimators that dominate the MLE esti-
mator a”. In particular, we suggest using an approach
from |Green et al.| (2005), who propose a way of set-
ting « given knowledge of an unbiased estimator with
biased information.

Synthetic Experiments We investigate the empir-
ical performance of estimators which combine labeled
and unlabeled data in well-specified, misspecified and
corrected settings. We measure both the error when
using the optimal « and the more practical approach
of |Green et al. (2005). We fix ny = 1000 and vary
ny, across a range of smaller values, aligning with the
assumption that many more unlabeled than labeled
points are typically available. Our results are in Fig-
ure bl In the well-specified setting, the combined esti-
mators perform roughly the same as just @V, matching
up with our theoretical observations for large ny. In
the misspecified setting, both combined estimators re-
sult in much lower excess risk than either estimator
individually, and as nj, increases, the labeled estima-
tor curve approaches those of the combined estimators,
suggesting that the weight on @” increases as more la-
beled data becomes available. Lastly, in the corrected
setting both combined estimators perform better than
@Y, but not by much. The weights a are reported
in the Appendix. The optimal weights for the well-
specified and corrected settings are higher (i.e. more
weight on the unlabeled estimator) than the misspec-
ified setting, and these weights decrease with ny,.

6 Real-World Case Study: Weak
Supervision

We validate our findings on real-world weak supervi-
sion dataset. We expect that some amount of misspec-
ification is inevitable, and that this causes additional
bias when learning from only unlabeled data. Unlike
our theoretical setting where we limit the number of
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dependencies d for simplicity, with real-world data we
anticipate many small dependencies which cannot be
completely corrected by the medians approach. We
seek to answer the following key questions.

e What is the standing parameter estimation bias
due to misspecification? To what extent does the
corrected estimator mitigate this bias?

e What is the data value ratio for the corrected es-
timator?

e Can a combined estimator with access to a small
amount of labeled data provide substantial bene-
fits over using only unlabeled data?

Protocol Our real-world task is the sentiment anal-
ysis task of determining whether IMDB movie reviews
are positive or negative (Maas et all 2011). The
dataset contains 50K movie reviews, which we split
into a training set of 40K reviews and a test set of
10K reviews. Our weak supervision sources are simple
heuristics that vote “yes” when positive words appear
and “no” when negative words appear. We provide
further details in the Appendix.

Unlike our theoretical model, where we assume that
each source has a single accuracy parameter, we find
that real-world sources have complex dependencies
and can be better modeled with class conditional accu-
racies. The method-of-moments approach in this set-
ting results in a quadratic version of the triplet method
(Fu et al.,|2020), the details of which we discuss in the
Appendix. We use this version for our real-world case
study, for which the same principles from our theoret-
ical framework apply.

Standing bias and correction For our first real-
world experiment, we measure the standing parame-
ter estimation bias when learning from unlabeled data
(paralleling Beg), and measure the decrease in bias
when using a corrected estimator. Recall that in our
model a corrected estimator has an asymptotic esti-
mation bias of 0 given certain conditions on d, m, and
n. On real data, however, we anticipate many small
but complex dependencies that are not necessarily cor-
rected for via our medians approach. Hence, we an-
ticipate that the corrected estimator reduces Bes; by
mitigating the effects of larger dependencies while still
being biased by the many small dependencies. We
compute the test cross entropy loss for a labeled model,
a baseline unlabeled and an unlabeled model with cor-
rection while varying n and report results in
Losses appear to converge, with a large gap between
the labeled and unlabeled models and a smaller gap
between the labeled model and the unlabeled model
with correction. These gaps in loss are reflected by
gaps in Fl-scores, computed using a threshold of .5.

IMDB Test Loss vs. log(n)

0.90 Labeled 1400{ — Unlabeled
— Unlabeled -~~~ Unlabeled (Corrected)
085 -~ Unlabeled (Corrected) | 1200
0.80 2 1000 )
G015 o, 800 e

IMDB Data Value Ratio vs. n

Data Value Ratio

05000 1000015000 20000 25000 30000 35000 40000
log(n) n

Model Loss (n =40K) F1 (n = 40K)
Labeled 570 71.79
Unlabeled 740 64.81
Corrected .686 68.12

Figure 6: We measure test losses and F1-scores for labeled,
unlabeled and corrected models on the IMDB dataset. Top
Left: losses vs. n; each model appears to flatten out by
n = 40,000. Bottom: losses and Fl-scores at n = 40, 000,
showing standing gaps in performance. Top Right: data
value ratios for the two unlabeled models.

ny nr  Flunabelea Flrabeled  Flcombined
40,000 40 68.12 64.70 67.06
40,000 80 68.12 67.65 68.81
40,000 120 68.12 68.92 69.64
40,000 200 68.12 69.97 70.41
40,000 400 68.12 70.81 71.04

Table 1: Fl-scores for unlabeled, labeled and combined
approaches on the IMDB dataset. We find that the combi-
nation generally outperforms either approach individually,
and in particular both in cases where unlabeled only per-
forms better and where labeled only performs better.

Measuring the value of labeled data Next, we
measure the data value ratio in the real-world set-
ting. Since both the unlabeled model and the unla-
beled model with correction have a standing bias com-
pared to the labeled model, we anticipate that the data
value ratio for both unlabeled approaches grows lin-
early with n, with the data value ratio for the baseline
unlabeled model having a greater constant factor due

to its higher bias. We report these results in

Combining labeled and unlabeled data We fi-
nally measure the performance of the combined esti-
mator from |Green et al.| (2005) in the setting where
a small number of labeled points and many unlabeled
points are available. We let ny = 40,000 be the en-
tire training set and vary nr between 40 and 400. We
use the corrected estimator for learning from unlabeled
data. We report the Fl-score using a threshold of .5.
Results are in [Table 11 We observe that the combined
estimator outperforms either approach individually for
nr > 40.



Manuscript under review by AISTATS 2021

References

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M.,
and Telgarsky, M. (2014). Tensor decompositions for
learning latent variable models. Journal of Machine
Learning Research, 15:2773-2832.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012).
A method of moments for mixture models and hid-
den markov models. volume 23 of Proceedings of
Machine Learning Research, pages 33.1-33.34, Ed-
inburgh, Scotland. JMLR Workshop and Conference
Proceedings.

Bach, S. H., He, B., Ratner, A., and Ré, C. (2017).
Learning the structure of generative models with-
out labeled data. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume

70, pages 273-282. JMLR. org.

Chaganty, A. T. and Liang, P. (2014). Estimating
latent-variable graphical models using moments and
likelihoods. In International Conference on Machine
Learning, pages 1872-1880.

Chandrasekaran, V., Parrilo, P. A., and Willsky,
A.S. (2012). Latent variable graphical model selec-
tion via convex optimization. Annals of Statistics,
40(4):1935-1967.

Craven, M. and Kumlien, J. (1999). Constructing bi-
ological knowledge bases by extracting information

from text sources. In International Conference on
Intelligent Systems for Molecular Biology (ISMB).

Dawid, A. P. and Skene, A. M. (1979). Maximum
likelihood estimation of observer error-rates using
the em algorithm. Applied statistics, pages 20-28.

De Blasi, P. and Walker, S. G. (2013).
asymptotics with misspecified models.
Sinica, pages 169-187.

Bayesian
Statistica

Domingos, P. (2000). A unified bias-variance decom-
position. In Proceedings of 17th International Con-
ference on Machine Learning, pages 231-238.

Fu, D. Y., Chen, M. F., Sala, F., Hooper, S. M., Fata-
halian, K., and Ré, C. (2020). Fast and three-rious:
Speeding up weak supervision with triplet methods.
arXiv preprint arXiw:2002.11955.

Green, E. J., Strawderman, W. E., Amateis, R. L.,
and Reams, G. A. (2005). Improved Estimation for
Multiple Means with Heterogeneous Variances. For-
est Science, 51(1):1-6.

Griinwald, P., Van Ommen, T., et al. (2017). Incon-
sistency of bayesian inference for misspecified linear
models, and a proposal for repairing it. Bayesian
Analysis, 12(4):1069-1103.

Gupta, S. and Manning, C. D. (2014). Improved pat-
tern learning for bootstrapped entity extraction. In

Proceedings of the Fighteenth Conference on Com-
putational Natural Language Learning, pages 98—
108.

Hsu, D., Kakade, S. M., and Liang, P. (2012). Identi-
fiability and unmixing of latent parse trees. In Ad-

vances in Neural Information Processing Systems,
(NIPS 2012).

Jog, V. and Loh, P. (2015). On model misspecification
and KL separation for gaussian graphical models.
CoRR, abs/1501.02320.

Joglekar, M., Garcia-Molina, H., and Parameswaran,
A. (2013). Evaluating the crowd with confidence. In
Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 686-694.

Karger, D. R., Oh, S., and Shah, D. (2011). Itera-
tive learning for reliable crowdsourcing systems. In
Advances in neural information processing systems,
pages 1953-1961.

Kleijn, B. and van der Vaart, A. (2012). The bernstein-
von-mises theorem under misspecification. FElectron.

J. Statist., 6:354-381.

Kleijn, B. J. K. and van der Vaart, A. W. (2006). Mis-
specification in infinite-dimensional bayesian statis-
tics. Ann. Statist., 34(2):837-877.

Lauritzen, S. (1996). Graphical Models.
Press.

Loh, P.-L. and Wainwright, M. J. (2013). Structure
estimation for discrete graphical models: General-
ized covariance matrices and their inverses. Annals

of Statistics, 41(6):3022-3049.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. (2011). Learning word vec-
tors for sentiment analysis. In Proceedings of the
49th annual meeting of the association for compu-

tational linguistics: Human language technologies,
pages 142-150.

Meng, Z., Eriksson, B., and III, A. O. H. (2014).
Learning latent variable gaussian graphical models.
In Proceedings of the 31st International Conference
on Machine Learning (ICML 201/), Beijing, China.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009).
Distant supervision for relation extraction without
labeled data. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume
2, pages 1003-1011. Association for Computational
Linguistics.

Ratner, A., Hancock, B., Dunnmon, J., Sala, F.
Pandey, S., and Ré, C. (2019). Training complex

Clarendon



Manuscript under review by AISTATS 2021

models with multi-task weak supervision. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 4763-4771.

Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., and
Ré, C. (2016). Data programming: Creating large
training sets, quickly. In Advances in neural infor-
mation processing systems, pages 3567-3575.

Ravikumar, P., Wainwright, M. J., Raskutti, G., and
Yu, B. (2011). High-dimensional covariance estima-
tion by minimizing ¢;-penalized log-determinant di-
vergence. FElectronic Journal of Statistics, 5:935—
980.

Takamatsu, S., Sato, I., and Nakagawa, H. (2012). Re-
ducing wrong labels in distant supervision for rela-
tion extraction. In Meeting of the Association for
Computational Linguistics (ACL).

Varma, P., Sala, F., He, A., Ratner, A., and Ré, C.
(2019). Learning dependency structures for weak su-
pervision models. arXiv preprint arXiv:1903.05844.

Yang, Z., Yu, Y., You, C., Steinhardt, J., and Ma, Y.
(2020). Rethinking bias-variance trade-off for gen-
eralization of neural networks.



Manuscript under review by AISTATS 2021

Supplementary Materials

A Glossary

The glossary is given in Table [2| below.

Symbol Used for

X An input vector X € X.

Y A latent ground-truth label Y € ¥ = {-1,1}.

m Number of sources.

Aj jth source output A; : X — Y; all m labels make up vector A

Y Probabilistic label in [—1, 1] output by the latent variable model.

ny Number of unlabeled samples.

nr Number of labeled samples.

(C] Canonical parameters of the Ising model for Pr(Y, A).

G Dependency graph G = (V, E) over sources and the latent ground-truth label.

B Edges among sources in G.

d Number of dependencies among sources d = |E\|.

a; True accuracy of the ith source E[\;Y].

av Estimated accuracy of the ith source using unlabeled data via the triplet method.

ak Estimated accuracy of the ith source using labeled data, i.e. k Y.

aM Estimated accuracy of the ith source using unlabeled data via the
triplet method and median aggregation.

N Random variable representing dataset used.

T Algorithmic randomness for estimating accuracies via triplet method.

R,Ry,Rr, Ry Generalization error R = Eqy,x) a,-[[(Y,Y)]. Ru,Rr, Ry are for a?,ak. @M respectively,
and (-, -) is the cross-entropy loss.

R®, Ry, RY, Ry Excess generalization error R° = R — H(Y|A).

Br Inference bias Br = >_(; ;ycm, 1(Ai; Aj[Y).

Best Parameter estimation error.

€ij Extent of misspecification on a single pair of sources €;; = E [\ \;] — E [N;Y]E [A\;Y].

€min s Emax Smallest and largest e;; for (i,7) € Ea.

Pry Rate of convergence for aM, Pny = max; E [(5?4 — ai)Q].

a(nu) Minimum labeled points needed for lower generalization error than ny unlabeled points.

V(nu) Data value ratio at ny unlabeled points.

V(nu) Approximation of data value ratio using upper bounds at ny unlabeled points.

o Weight for unlabeled estimator to combine unlabeled and labeled estimators.

a™(a) Linear combination of unlabeled and labeled estimators using weight a.

Table 2: Glossary of variables and symbols used in this paper.

B Additional Theoretical Results

In this section, we discuss how our generalization error bounds, namely the standing O(d/m) bias for unlabeled
data, and our results for the corrected medians estimator can still apply to other method-of-moments estimators
that exploit conditionally independent views of hidden variables. Next, we present a lower asymptotic bound
on the generalization error for labeled versus unlabeled data. Finally, we give more details about the combined
estimators and the generalization bounds from using them.
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B.1 Other Method-of-Moments Estimators

We present two other method-of-moments estimators and sketch out arguments for how using them (under
misspecification) results in the same scaling of generalization error, and for how the median approach is able to
help correct standing bias. We then provide an abstracted argument.

“Quadratic” Triplets This alternative latent variable model relies on class-conditional probability terms
instead of mean parameters (Fu et al.,2020), which assume some symmetries in the distribution (see Lemma .
For the i¢th source, we can write the parameters to be estimated as

[Prn=1Y =1) Pr(n=1]y =-1)
Hi= pr(\ = —1[y = 1) Pr(\ = —1|Y = —1)

Let
[P =10 =1 Pr(\ =17 =—1) C[Pr(Y =1) 0
Ois = |pr(h = ~1,A; = 1) Pr(hi= —1,\, = —1)| WdP= 0 Pr(Y = —1)
Then, we obtain that
Oij = wiPpj . (6)

The left-hand side is observable, and we can form triplets again to solve for each p;. Set « = P(\; = 1|Y = 1),
¢ = % and d; = %. The top row of u; is then [@ ¢; — d;a] with ¢; and d; known. For a triplet
i, 7, k, and the appropriate u’s, using the a, 8,y notation above and corresponding c¢;, ¢;, ¢, and d;, d;, dj, terms,

we obtain the system (see [Fu et al.| (2020) for more details)

(1 + didj)aﬁ + cicj — Cidjﬂ — deiOé = Oij/ PI‘(Y 1)
(1 + didg)ay + cicp — cidyy — cpdiae = Oik/PI“(Y =1)
(1 +djdi) By + cjcp — cjdiy — erd; 8 = O/ Pr(Y =1)

)
)

To solve, a and ~y are expressed with 8 for the first and third equations and this is plugged into the second—
yielding a quadratic equation to be solved.

This approach incurs standing bias under misspecification. Quadratic triplets rely on conditional independence
by assuming that Pr(A\; = 1,A; = 1) and Pr(\; = 1|Y = 1)Pr(\; = 1Y = 1)Pr(Y = 1)+ Pr(\; = 1|Y =
—1)Pr(\; = 1|Y = —1) Pr(Y = —1) are equal. Suppose, however, that (i,j) € Ex. Then, uiPu;r is no longer
equal to O;j;, but O;; + 0;;, where §;; = Pr(Y = 1)[Pr(N]Y = 1) Pr()\;|Y = 1) — Pr(A\, \|Y = 1)] + Pr(Y =
—1)[Pr(N]Y = =1)Pr(\;|Y = —1)—Pr(\;, Aj|Y = —1)]. This §;; can be written exactly in terms of the canonical
parameters © and results in an inconsistent estimator of Pr(\;|Y). We note that the probability of selecting a
bad triplet that leads to this is the same for this method and our main triplet method, so the standing bias still
scales O(4L).

This approach can also be corrected using medians. Out of (m; 1) triplets used in estimating Pr();|Y"), there are
(";") —m —d — 3 triplets that result in a consistent estimate. So as long as (";') —m —d—3 > 1. (";")
and ny is sufficiently large, using medians will result in a corrected estimator. See the proof of Proposition [I] in

section for more details.

Method-of-moments for topic exchange |Anandkumar et al| (2014) describes tensor method-of-moments
estimators for a variety of applications, including topic models. In the topic model case, h is the topic latent
variable, x1,...,x, are the words in the document, all assumed to be conditionally independent given h and
drawn from an unknown conditional probability distribution u;, parametrized by the latent topic variable. Here,
x¢ = e;, the standard basis vector if the tth word is . |[Anandkumar et al.| (2014)) uses the fact that

k

Elzy ® 2o ® x3] = Zwmi @ i & [y
i=1
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where w; is the probability of h being topic ¢, to perform a tensor decomposition of the observable E[z; ® 2o ® 23]
and learn pyp. Note the similarity to our setting, where Y is used in place of h and where there are two (i.e., a
matrix) instead of three views (giving a tensor). Conditional independence (of words given the topic) is required
to for this expression to hold. Therefore, when conditional independence is violated, Zle wilk; @ s @ g is
equal to E [z1 ® x2 ® 23] plus some additional perturbation that is a function of the probability distribution.
This error is propagated into the estimate of up, and we assume Lipschitzness of this estimator. Furthermore,
assuming random triples are selected to learn the accuracy of each word, using this approach to estimate accuracy
parameters will again yield a standing bias.

Furthermore, the medians approach can again correct for this standing bias—there are (’”2_ 1) —m —d— 3 good
triplets out of (m; 1), so we require the same conditions to yield consistent estimators as those for the quadratic

triplets case.

Abstraction Consider in general some observable quantities o1, . . ., 0,, some unobservable quantities uy, . . . , U,
that depend on the value of some latent variable h, and a relationship that holds when some set of dependencies
Q) is taken into account,

flo1,...,00) = galuy, ... uy),
Next, we call s(f(o1,...,0,)) an estimator that produces estimates of uq, ..., u,.

Our approach is simply to account for errors due to accessing an incorrect ', where |\ Q'| = d. Then,

flor1,..y00) = gar(ut, ... uy) +d X Alug, ... uy),

where A is some error term. Given this setup, we then propagate the error term A in the estimator s, computing
s(f(o1y...,04)) —s(f(01,...,0,) —dA(u1,...,u,). This can be done either via perturbation analysis or Taylor
approximation or other methods—the only requirement we place is Lipschitzness on the estimator s. Then, by
randomly selecting subsets of (01,...,0,) to estimate uy,...,u,, the probability of picking a subset with error
scales in d, showing that there exists a standing bias that is a function of the number of unmodeled dependencies.
Moreover, there are some subsets of (o1, ..., 0,) that yield consistent estimators s; if this quantity is greater than
half of all the subsets, then a medians approach can be beneficial when there is enough data.

B.2 Asymptotic lower bounds on generalization error

While Theorems |2 and |3| provide upper bounds on the excess generalization error, it is also important to consider
the asymptotic lower bound—is the standing bias from misspecification in the unlabeled approach inevitable?

Looking at the decomposition in Theorem Ex [DKL(Pr()\)HF;r()\))} approaches 0 asymptotically. We thus

seek to asymptotically lower bound Y ;" Ex ,y {DKL(Pr)\i‘y HPNrMy)} Note that in the labeled data case,
parameter estimation error approaches 0 as n grows large since the observable estimated accuracy is both
unbiased and consistent. In the unlabeled data case, we show that standing bias persists.

Theorem 4. Suppose that there are |Ex\| = d unmodeled dependencies. When we use the latent variable model
described in section[3, the lower bound of the excess generalization error is asymptotically bounded by

(m — 2d)d2e2 . b

li RE¢ > min“min B 7
nuli)noo w = 2(m— 1)2(m — 2)2 + o1 ( )

2_2
When d is o(m), the asymptotic parameter estimation error is §2 dgi"g‘“ .
m

Proof. We compute an asymptotic lower bound for Y " | Exr ;v [DKL (Pry, )y ||ﬁAi|y)} . Applying Lemma we
see that

m

. m -~ 1+(Z1 aifdi 170,2' C_lif(ll'
lim S Ey,y [DKL(PrMyHPrMY)] =3 e <1+ ‘)+ ~log <1+ ‘ ) 8)

ny—00 £ . 1 — ai
=1 =1
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We focus on the lower bound of any one element of this sum. For ease of notation, let a := a; and = = a; — a@;.
Then this expression for an arbitrary ¢ becomes

1+a; a; — a; 1—a; a; — a; 1+a T 1—a x
1 1 I 1 = — 1 1-— — 1 1
2 °g<+1+ai)+ 2 Og<+1—ai> 2 Og( 1—|—a> 2 Og<+1—a> ©)

Take the negative of this expression and define it as a function f(z) to upper bound:

f(x):l—;al (1—1_T_>+15a10g<1+1_> (10)

We show that f(z) < —3x?. Note that for =0, f(z) = 0 and 2 = 0. Then, we must show that for z > 0,
f'(x) < —z and for x < 0, f'(z) > —z. Taking the derivative of f(z) gives us f'(z) = ﬁ, and it is clear
that the previous inequalities are satisfied.

Using this fact in (§)), we have that lim,, e > Exiry [DKL(PrMny’VrMy) =3, 2(a;—a;)% Fori€ Ej,
note that by Lemma [l it is possible to construct a graphical model such that a; —a; = 0. For ¢ € F), we know

that |a; — @;| is at least %. Therefore,
1 & o1 o (m—2d)d?e2. b
_ i — G 2 - Py Z min“min 11
22@ @) 2;;(& Y e § g 1 (11)
1= 7 A

O

B.3 Combined estimator analysis

The general form of the combined estimator we consider is a*(a) = aa? + (1 — a)a’ for some weight « € [0, 1].
The James-Stein type estimator from |Green et al.| (2005]), which we evaluate empirically, uses the following:

— . ~U r ~L _~U
= 1l - 12
a:=a’ + < Tt —?iUlz;—l)Jr(a a’), (12)

where ¥ = Cov [a”] and r € [0,2(m — 2)]. Note that this is almost equivalent to a“n(W). Green
-

et al.| (2005) show that this estimator dominates a* when the unbiased estimator is Gaussian and its covariance
is known. However, since we can only estimate the covariance matrix, we replace ¥ with an empirical estimate
¥ in practice. Moreover, since a” is only Gaussian asymptotically, we do not provide theoretical guarantees on
a. We instead focus on analyzing the performance of the general combined estimator a' ().

The change in estimator only impacts the generalization bound via the parameter estimation error,
Yo Enry {DKL(Pr)\”yHPr)\”y)] We simplify this using Lemma doing a Taylor approximation on a com-

bined asymptotic estimate a¢ := aa; + (1 — a)a; rather than a;. This gives us

>~ Exe [Dict(Prxyy[[Pryy)] = Z % log (1+ a(1a+;gz)) 41 S log (14 %) (13)
i a; — a; 2 _ - "1 1 2c(a; — a; 2 - 2 2 » 9
P e s g o) (VR —a)+ 0 or® (@ - e?))

(14)
We present bounds for the three settings discussed in the paper.

Well-specified setting In the well-specified setting, the unlabeled data accuracy estimator is consistent, so
a; = aj, and therefore

> By [DiaPrylPoa)] = 3 5 (12 ) (B G —0%) + (1 - a8 [@F —a)?)) (1)

i=1 =1
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Using the results of the proof of Theorem I and the bound on E [( — ai)Q] in Lemma @ we get that this is at
2 2

most o %% 4 (1 — )57t

Misspecified Setting The constant terms for the bound on accuracy parameter estimation error will change

due to a¢ in the denominator rather than a;, but the derivation follows our proof for Theorem [3| Therefore, for

some ¢/,

i —~ dad da? datd ol —a)idd dia®’m 1—a)%m
§ En 7y {DKL(PYMYHPYMY)] §€max< L 2 3 ( )¢ )+ 4 + ( ) .
— m /Ny mny mny, ny 2ny,

Corrected Setting Here we consider the combined estimator aa™ + (1 — a)a’. Under certain conditions, we
know that a™ asymptotically converges to a. Therefore, the accuracy parameter estimation error is

ﬁiENﬁy[DKﬂPm”yM§Mw] ﬁi;(l_a )QﬂEKaw—d)} 4+ (1-a)E [@ 7a0ﬂ) (16)

i=1

E [(Eﬁ” —a; )2] is just the variance of the median estimator. Therefore, this summation is bounded by ac,mp,,, +
(1 — a)?5™ under the conditions in Proposition

2nL

C Proofs

First, we formally state our assumptions on the graphical model that are needed for our results.

Assumption 1. Suppose that the distribution of Pr(Y,A) takes on the form

Pr(Y,\) = % exp (ey + zm: ONY + ) aiinAj), (17)

i=1 (4,5)€Ex

where Z is the cumulant function, and all canonical parameters © are positive. This assumption also means
that E [X\A;],E[NY] > 0 for all i and j. Define amin = min; a; as the minimum true accuracy. Define

bimin = min; ;{E [\;\;] ,E [AiXj]}. Lastly, define Gmax = max; a;, = max; j  Er [ W

C.1 Proof of Theorem 1

Our goal is to evaluate Ey x) v 7 {l(f/, Y)}, where N is the randomness over a sample of n points (either ny or

nr). This expected cross entropy loss can be written as

Pr(Y' =YX = A)

BV = VN A )+HWM) (18)

I['—q:(Y,)\),/\f,‘r [l(?,Y)} = _]E(Y)\)N'r [IOg

where Y/, Y and X', A are independent copies, and the conditional entropy H (Y '|A) is by definition

HY|A) =Ex[-Pr(Y = 1[N = X)logPr(Y = 1JX = X) = Pr(Y = —1JX = X)) log Pr(Y = 1|A" = A)]. (19)
Next, we evaluate log W. Define Pr to be the conditionally independent label model parametrized

by the true accuracies a = E [AY] in the asymptotic regime; similar to Pr’s definition in ,

PrOA =AY = Y)Pr(Y' =Y)  [I7, Pr(\ = M(X)[Y/ = V) Pr(Y = 1)

PrY =Y A=A(X)) = Pr(A = A(X)) - Pr(A = A(X))

(20)
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Then,

: Pr(Y =YX = N, Pr(Y' =Y|XN = A) g PI =1N =)
OgP(Y’—Y|X: N OB Ry /—y|,\/— A Py = YN = A)

- )\ =\NY =Y) Pr(\ = X) Pr(N =AY’ =Y)

Z log — log .

=AY =Y) Pr(X = A) Pr(X =AY’ =Y)

=1

We have used the fact that the class balance Pr(Y’ =Y) is the same value across the true distribution, ﬁi and
Pr. Plugging back into , we get

i Pr(\N, = \|Y' =Y) [ Pr(N = AlY’ = )} Pr(\ =
— E ) —E lo —E log — + H(Y|A
; (Y A),N, [gp( N =N[Y =Y) (Y,A) gP( N =AY =Y) AN gPr(X: (YIX)
(21)
We simplify each expectation now.
m PrV=X\|Y'=Y)].
— 2 s By [10% m} -
By definition of conditional KL divergence,
Pr(\, =NV =Y i Pr(\, = N[V =7Y)
— E N+ |log = E N |log = 22
; e Pr(X =AY =Y ; NS B = MY = V) 32)
- Ewn. []Ey [DKL(Pr,\i|y||ﬁ,\; ,Y)H . (23)
i=1

Pr(\=A|Y'=Y)
2. —Ewa [log Pr(N=A[Y = y)}

The key difference between Pr and Pr is how the distributions factorize. The above expression can be written
as

- Y Eay

Pr(X, = MJY = V) Pr(X, = AV = V)
log Pr(\, N = A\, A [V = Y)

(i.)EEx 7
S B [1 Pr(\, X = X\, \j|Y = 1) ’Y N
/\i;)\j Og — 7 ] — = T =
W5 Pr(\, = MY = 1) Pr(X, = \,[Y =1)
e | Pr(X, Xy = A AglY = —1) v 1l by — 1
AN S B T S = ) P, = Y = —D)| (¥ =-1).

Note that these expectations are equal to the mutual information between A; and A; conditional on Y =1
or Y = —1. Then by definition, the expression is equal to

S IQGNY =D Pr(Y =1)+ I(A; Y = 1) Pr(Y = Y IQaNY).
(i-1)€Ex (i-1)€Ex

3. —Exn [log iigi, i;]

This term is the expected negative KL divergence between the true and estimated distributions of A,
En [DKL(Pr()\)HP;r(/\))]. While there are many ways to estimate this distribution, we stick with simply

the MLE estimate so that this expression will converge to 0 asymptotically.

Therefore, becomes

B [(T,Y)] = HEYIX) = Ex [ D PrIPr(0)| + 37 1063 1Y) + Y Exry [ Dt (Prayy 1P, v)]
(i,7)€EN i=1
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C.2 Proof of Theorem 2

Our goal is to evaluate > .~ Exrry |:DKL(PI‘)\i|y||f;];)\i|y)i| on a labeled dataset. Using Lemma note that
E [5%] = a; = a;. Therefore,

EN,T,Y [DKL(Pr/\i\Y”iS;,\i\Y)} = 1 _;ai . 2(1 iai)zE [(alL — ai)Z} =+ 1 _2011' . 2(1 _1 ai)2E [(65 — ai)Q] + 0(1/n)
= ﬁ\/ar (@) +o(1/n)

It can be shown that this is exactly i To see this, formally define al = % Z?i1 /\g Y7, where )\j YJ belong
the jth sample of the dataset. Then Var (aX) = Z"L Var ()\ng) = % St E P\gzng] —E[NY) = 1-a}

nr

Therefore, >0 | Enr\ry DKL(PI')\i‘yHl’D\;')\i‘y)} = ;™ 4+ 0o(1/nr), and our proof is complete.

2nL

C.3 Proof of Theorem 3

We restate the full theorem with the value of the constants. Under assumption [I] using ny weakly labeled
samples and a misspecified model yields excess generalization error

c1d Co c3d cam
Rf <epax | — A Y) 1 ,
U_sa<m+\/n7+mw> o +(¥E (Ais AjY) + o(1/n)
] A

where

2 14 1
Cl1 =
! brznm min (1 - a?nax)b?nm min

c 1 3(1 bfmn) 1 n 2
2T (1 - a?nax)b?mn Qin bzmn b;lnln b12n1n

= )g%;ﬂ <b41 b22>

C3 =
max min mm min min
3(1 — b2 1 2
4= 2( ml;) < T ti3 > )
8bmm( amax) brmn bmin

and emax is an upper bound on €;; defined in Lemma

Define a; = E- [ W to be the asymptotic estimator with expectation over triplets. We apply Lemma

and simplify it to get

“ ~ 1+ oay a; — a; 1—a a; —a;
Ey . [D Pry (y||Pry. }: ( i (1 i ) i (1 i Z)) 24
; Ny | DxL(Pry, v |[Pry,y) ; 5 log {1+ 1T + g log(1+ 1 a (24)
a; — "1 2@1' a; — a; . _
+ 3 S a3 (o e (G-

Jro(l/n).

This shows that there are three quantities to bound: a; — @;, Enr 7 [a; — @;], and Ex - [(Ei — di)z}. Recall that

for the unlabeled data case, a; = W for random Aj, Ag, and a; = E, [ W} The bounds
for Epr - [@; — @], and Epr - [(Ei — &i)Q] are stated in Lemma |§|; we focus on bounding the expected asymptotic

gap a; — a; here.
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Lemma 1. For i € E), we have that

e R e S T D )
For i ¢ Ey, we have that
e e e T ]| 20
And for all 4, it is thus true that
la; — a;] < (m_‘iﬁ (27)

Proof. We define ¢;; = E [\;\;] —E [NY]E [A\;Y] for (4,5) € Ej, i.e. the error we get from assuming conditional
independence between A; and A;. We define the exact value of ;5 in Lemma@ and since all canonical parameters
are assumed to be positive, we know that there exist emin, Emax that satisfy 0 < emin < €55 < Emax Over the entire

edgeset Fy. We now propagate this error to a;. Define (iz(-j ®) before we take the expectation over triplets as

a

Gk [EAGTE [Nide]
' E [Aj A]

Note that this means @; > byin. When each E [A;A;] can be written as E [\;Y]E [A\;Y], we get that aﬁj”“) = a;.
However, by our assumptions on the edgeset, at most one of the above pairwise expectations has nonzero ¢;;, in
which case the true a; is computed using E [X\; ;] — &;5, which is equal to E [\;Y]E [A;Y], rather than E [\;);].

If (i,5) € Ex (but not (j,k) or (¢,k)) then

JE DA = ) E [Midg]
@ = E A

This means that a; > a; and we asymptotically overestimate the accuracy. Then the difference between ELZ(-j k)2

. . —(j4,k)2 2
2. —(4,k)2 2 e E[NiAg] ) . Emax _(3,k) o a; —aj . - . .
and af is a; — a7 = TEooa] S [smmbmm, m] Moreover, a,”" —a; = W Since a; > a; in this case,
_(i.k

we have that agj’ )4 a; € [2amin, 2]; as a result,
_(4,k) Eminbmin Emax
a; —a; € [ "9 (28)

2 2 min@min
. e e _(4,k)2 B
Similarly, if (i,k) € Ex, we have the same bounds: goh? _ 2 M S [Eminbmin E“J] and thus
5 5 5 i i E[Xj k] 7 bmin 47

alim _ a; € [5‘““‘2”“““, max ] On the other hand, if (j, k) € E\, the true accuracy is written as

z 2bmin@min

 [EDGNIE ]
YN TE DM =)

This means that (_zl(.j k) < a; and we asymptotically underestimate the accuracy. The difference between (_zgj k)2

. _(j,k)2 FEDG A EDG e o _(jik )
and a2 is a? — al"M? = E[i\]jkx\k[](lE[f\]jA[k]_:jk) € [Eminbhin, 5—225—]. In this case, a; + a?"™ € [2bmin, 2], s0
2
—(4,k) €Ininbmin Emax
R (29)

min“min
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Lastly, if none of 7, j, k share edges, a; = a;. In our algorithm, we estimate each a; using A\; and Ay chosen
uniformly at random from the other m — 1 sources. We thus need to compute the probabilities that (4, 7), (¢, k)
and (4, k) are in E). Note that these probabilities depend on if i € Ey, which is true for 2d sources.

.. . . .. . . 1(m—2 2
PI‘((Z,]) ) (ka) € Ek ‘ 1 ¢ Ek) =0 Pr((ZL]) U (ka) € EA | 1€ EA) = ((m—l) ) - m—1
2
. . 2d . . 2(d—-1)
P k E EE)y=——— P k E Ey)y=+——""-"+—"
I‘((], )G A |/L¢ A) (m—l)(m—2) I‘((], )G A |’LE A) (m—l)(m—Z)
Therefore, if ¢ € E), we use and to bound the expected error as
Qs a 2 Emax 2(d - 1) _Eminblznin Emax
! "Tm—1 2bguinamin (M —1)(m —2) 2 = (m — 1)bminGmin
_ 2 8mimbmim 2(d - 1) Emdx Eminbmin (d - 1)€max
a; — a; 2 : 3 = - 2
m—1 2 (m - 1)(m - 2) 2bmln min m—1 (m - 1)(m 2)bmm min

Note that this lower bound can be negative in this case, so it is not clear if a; or a; is bigger in expectation.

If ¢ ¢ E\, using then the expected error is bounded as

- 2d —Eminb2;, —deminb?;,,

G S T N m— 2 (m—1)m-2)

i a > —Cmax —demax
T m=D(m—2) 262,62, (m—1)(m— 2k,

In this case, a; < a;. Finally, observe that regardless of if ¢ € E\ or not, the absolute value of the bias is bounded
by

— 5max
|az - az‘ S ( - 1)b1211111 min . (30)
O

We return to Since a; > @; when i ¢ E\, we have that 4% log(1 + GH;E‘) + 5% Jog(1 + u) <

Hz“’ log(1 4+ max %= “’) for i ¢ Ex. On the other hand when ¢ € E), this expression can be upper bounded as
H;“ . “1;;‘ +1 54 “1:; (a{ ?;) using the inequality log(1 4+ ) < z for > —1 (it can be easily verified that
a;—a;

= and % ; are at least 71) Since |E)y\| = 2d and e,,x < 1, the first summation of is bounded by

2

d€ max €

=218 (1+ Gy e )
T T i) AT o
e (T T ) )
ot (1 e < o

where ¢; = ﬁ (1 + W) Next, we bound > 1", “‘_a’ENT [a; — a;).

max/“min~ min

m

a; — a; a; —a -
Z ¢ 7;]1‘:./\/'.,_ <Z‘ ! Z| TH&i—aiH (35)

mln 1 2 1 MEmax < C2E€max (36)
2 V nU l’l’llIl bill'llll bI2TllIl a?ﬂax ( - 1)b121111’1 min o V nU ’
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_ 1 3(1-02,) (1 2 m 1( 1 2a,(a:—a,) ~ 22
where ¢; = = >bm\/ ot it ) We bownd 302, 5 (= + Tt B [(@i - a)7],

max min

which can be split into an expression independent of misspecification and one dependent on it:

Xm: }( 1 n 2a;(a; — ai))E [(5, _ &,)2} < Cam + f: ME [(a‘ — @‘)2] (37)
—~2\1-a} (1—a3)? M A= o A-ap)? e

where ¢4 = #@23)) <b41 + b22 ) The summation in is bounded as follows, using the fact that a; < a;
for i ¢ F\:

max min min

"N —a . 3 1-02,, 1 2 _
27(1 7C_L2)2EN,T [(ai —ai) ] < Ing 52 1_az_ 7 X + 12 Z |ai — ail (38)

min max min min

3 1—02, 1 2 2d€ max C3dEmax
< . min < 39
T dng b2 (1 —a2,.)? <b4 T ) ((m —1)b2. a2, > - mny (39)

min max min min

3(1-b2 .
where c3 = (17&2()% (b41_ + b22_ ) This concludes our proof.
max min min min min

C.4 Proof of Proposition 1

To prove the ability of using the median of the accuracies to correct for misspecification, we first examine the
asymptotic case. For i € F), note that out of a total of (m;l) triplets, m — 2 of them will involve the edge

(i,j) € E,, resulting in a higher inconsistent estimate of the accuracy. d — 1 of them will involve an edge
(4, k) € Ej, resulting in a lower estimate of the accuracy. Therefore, W —m — d — 3 triplets are
consistent. As long as the (™, 1) — (m —2)th largest triplet is greater than half of all the triplets, and the d — 1th
largest triplet is less than the half of all the triplets, then the median will be a consistent triplet. This gives us

the conditions m > 5 and d < Mﬁ-

Next, for ¢ ¢ E), d triplets will involve an edge (j,k) € E), resulting in lower estimated accuracy, while the

other (m; 1) — d triplets are consistent. Therefore, as long as d < Mﬂ, the median triplet is consistent.

Lastly, we must consider the finite sample regime when the ordering of the accuracy estimates are perturbed
by sampling noise. When each accuracy’s expected sampling noise is less than half of the minimum standing
bias of a triplet, the order of the accuracies will not change on average. This translates into the inequality

. 2
J’k)|. The minimum standing bias is Z==’min and E [la; — a;|]] ~ O(1/4/n) so this

E [[@; — @] < 4 ming; 4 |a; — a' !

means that ny > ng ~ Q(1/€2,)).

D Auxiliary Lemmas

Lemma 2. For any source \; with accuracy a; = E [A\;Y],

Pr(\ = 1|Y = 1) = Pr(\ = —1]Y = 1) = HTG
1 a;
Pr(h = 1Y = 1) = Pr(\ = 1y = ~1) = -

Proof. By Proposition 2 of [Fu et al.| (2020), we know that \;Y L Y for the binary Ising model we use, defined
in section [3] Intuitively, this means that the accuracy of a source is independent of the value of Y, and therefore
Pr(\Y = 1Y = 1) = Pr(\;Y = 1) = 4% since E [\;Y] = 2Pr(\;Y = 1) — 1. Repeating this calculation with
remaining configurations of Pr(\;Y = £1|Y = £1) concludes our proof. O

Lemma 3. Define a; = E[\;Y], and let a; be our estimated accuracy on n points. Furthermore, let a; be the
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expected asymptotic value of a; over 7. Then, the estimation error is

g 1+az a; — a; ENT[dz_az] 1 ~ _\2
IETDPvPv}: (1(1 ) : Efi—i)
v [PruPrapliPogm) | === es (U 227 + = g, sy @)

1—a; a; — a; ENT[ai—@i] 1 . _\9
1 (1 ) : En r |(@; — a; )
T (% LT e 4dafm2N’W ai)’]
+o(1/n).

Proof. As discussed previously, this term is equal to —Ey,x) 7 [log W} . By the law of total expec-

tation, we now have

Pr(\, = \|Y =1) B , Pr(\, = A Y = —1)
+Pr(Y =—-1|]A"=X)log Pr(V = Y = 1) | (40)

—Eans [Pr(Y =1X = A)log

Pr(N, = A, [Y = 1)

Suppose A; ¢ E). Conditioning on the value of A; and using Lemma becomes

Pr(X = \i|Y =1) Pr(); X =AY = -
— = ,: = — I: -
Ex_,nr [Ey, |Pr(Y =1]A )logP 0o i—)‘7,|Y— 0 +Pr(Y 1A )logP P g—Y A
1 .
= — E)\,i,./\/n' |:(PI‘(Y = 1|A_,“)\Z = 1) PI‘()\Z‘ = 1|)\_1) + PI‘(Y = _1|A—ia)\i = — )PI‘( = —1|A_Z)) log 1 i i
+ (Pr(Y = 1{A_;, A = —=1) Pr(X; = —1|A_;) + Pr(Y = —1|A_;, A; = 1) Pr()\; = 1|]A_;)) log 1 — ai]
—a;

—a;

= —E, . NT{Pr(AYlP\ )log :JrPr()\ =—1]A_ )log1

%

Note that Pr(\ = 1,Y = 1|A_;) = Pr(\ = 1|y = PRI and Pr(h = —1,Y = —1|]A-) = Pr(\ =

-1y = —1)W since \; and A_; are conditionally independent given Y, soPr(\Y = 1|A-;) = Pr(\; =

1Y =1) = 42 Similarly, Pr(\;Y = —1|]A —4) = Pr(\; = —1|Y = 1) = 15% 50 the conditional KL divergence
is equal to

14+ a; 1+a; 1—a; 1-a;
1 1 : 41
2 %11, 2 %1, (41)

Enry [DKL(PTMIYHﬁAiIY)} =—En - [

Now suppose that A\; € E) and has an edge to some A\;. When we simplify by conditioning on A;, Aj;, we
find that Zle{ﬂ} Pr(Y = 1A, = LA = )Pr(\ = LA = A ;) +Pr(Y = —1|A_;;, i = —1, )\
DPr(A; = —1,X; =lA_; ;) (i.e, the coefficient for log 1+‘“) is equal to Pr(\;Y = 1|A_; ;), and this is still equal
1';‘“ The same holds for the coefficient of log a’ . Therefore, . ) holds for all \,;.

to

Next, we evaluate —E {log 1+‘”] and —[E {log ] where expectation is over A and 7. We apply a second-order

1—

Taylor approximation of f(z) = log 11_’:‘ at x = a;:
1+a; 14+a;, 1+a; 1 1 o
1 ~ 1 : i~ Qi) — 55 (A — Gy 1/n).
Og1+ai Og1+a¢ 1+a; 1+ai(a i) 2(1+ai)2(a a;)” +o(1/n)
Taking the expectation on both sides, we get
1+a 1+a; | Engla]—as 1 .
~Ep |1 ~-(1 ’ - En,r [(@ - @)% ) + o1
N [ogl—i—ai} Ogl—i—ai 14+a; 2(1 + a;)2 N, [(a a)} +o(1/n)
— a; ENT[&i—ai] 1 - _\2
—1 (1 ) ’ En . [(a@; — a 1/n),
o8 +1+al 1+a, 21 +a;)2 v [(@ —ai)*] +o(1/n)

| S
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where we have used Lemma [

Similarly, we apply a second-order Taylor approximation of f(x) = log 11:; at r = ay:
1—a; 1—a; 1—a; -1 1
1 -~ 1 - - ; — ;) — ———— (a; — a;)? 1/n).
%1, Ogl—ai+1—di 1—ai<a i) 2(1_6—”)2(“ a;)” +o(1/n)
Taking the expectation of both sides,
1—a; 1—a; B[ —a) 1 U
“E |1 - —(1 ’ - En . [(d@; — a; ) 1
[Ogl—az} Ogl—ai+ 1—a; 2(1 — a;)? N, [(a a')} +o(1/n)
a; — a; En - [a; — a3 1 oy
=1 (1 ) : E T i — g 1 .
A A g 2 =gy v @ = @)’ +o(l/n)

Substituting these expressions into , we get our desired equation.
O

Lemma 4. The remainder of the Taylor approximation done in Lemma @ is o(1/n) for estimation done on n
samples in both the labeled and unlabeled cases.

1+a;

Proof. The remainder for —Ey/ ; [log
—En s {log 1= a’] is bounded by WEN’T [(di — ?ii)?’].

} is bounded by mE_/\[’T [(di —’di)?’}, and the remainder for

For the labeled data case, it is easy to check that Exs [(in — ai)g] ~ O(1/n2). Therefore, we focus on analyzing

the unlabeled data case’s estimator by bounding Exs [|(‘zi —a;? | A, )\k] independent of choice of 7 and k. For
ease of notation, define X = A\ A; and Y = A\, such that XY = A;Ax, and let

:a(,j’k) = w 4 :=a = M

E[XY} ’ == R[XY] ’ (42)

Note a € [—1,1], so clip & € [~1,1]. Because X € {—1,1} and E[X] is an ii.d. sum of n = ny samples from X,
we can apply Hoeffding’s inequality to get:

Pr (|BLX] - ELX]| > ) < 2exp (_2;’;;2) — 2exp (-”j) (43)

The same is true for E[Y] and E[XY]. Thus, by union bound,

2
Pr (|E[X] —E[X]| > eVIE[Y] - E[Y]| > eV [E[XY] - E[XY]| > e) < 6exp (—";) (44)
Refer to the event (| [X] — E[X]| > eV |E[Y] — E[Y]| > eV [E[XY] - E[XY]| > e) as B. If =B and e <
%min(E[X] E[Y],E[XY]) < 1, then
E[X]-E[X]| <e, [E[Y]-E[Y]<e [E[XY]-E[XY] <e (45)
By the mean value theorem with f(z) = \/z, there exists a u between EI[ET)](]E)[/}]/] nd EP[()](]E}[)]/] such that

|6 —a| =

1 (BXJE)Y] EXE[Y] (46)
2vu \ E[XY] E[XY]



Manuscript under review by AISTATS 2021

Note that
 (EXJE[Y] E[X]E[Y] _((EX] - e (E[Y] —¢) EX]E[Y]
u 2 min ( Exy] | E[XY] ) 2 min (P ) "
_((E[X]/2)(E[Y]/2) EX]E[Y] _(EX]E[Y] EX]E[Y]\ _ E[X]E[Y]
= mm( T+e ' TE[XY] ) = mm( ' TE[XY] ) =78 (48)
Thus,
o< V2 |EXEY] EX]EY] )
- VEXJEY] | E[XY] EXY] |
For the term on the right inside the absolute value:
(E[X] - )(EN] —¢) _ EXJEY] _ (E[X]+¢)(E[Y] +¢) (50)
E[XY] + e T OEXY] T E[XY] -
(E[X] - )(E[Y] —¢) _E[X]E[Y] _ E[X]E[Y] E[X]E[Y] _ (E[X]+¢(E[Y]+¢ E[X]E[Y] (51)
E[XY] + e EXY] ~ E[XY] EXY] — E[XY] — e E[XY]
E(X]E[Y] _EXJEN]| _ ax ( (EX]—¢(E[Y]—¢) E[X]E[Y] ‘ (52)
E[XY] E[XY] | — E[XY] +¢ E[XY]
(EX]+¢)(E[Y]+¢) E[X]E[Y]
‘ E[XY]—e¢ - E[XY] D (53)
Examining the left term in the max,
(EX] - o(E[Y]—¢) E[X]E[Y] ’ _ ‘ (E[X] — o (E[Y] - gE[XY] - EX]E[Y](E[XY] + ¢) (54)
E[XY]+e E[XY] E[XY](E[XY] +€)
_ —e(E[X|E[Y] + E[X]|E[XY] 4+ E[Y]E[XY] — €E[XY]) ‘ (55)
EXY|(E[XY] +¢€)
EXIE[Y] + EX]|E[XY]+E[Y]E[XY]
= E[XY]? ‘ (56)
=eC;1 >0 (57)
Examining the right term in the max,
(EX]+¢)(E[Y]+¢) E[X]E[Y] ’ _ ‘ (E[X]+ ¢)(E[Y] 4+ ¢)E[XY] — E[X]E[Y](E[XY] — ¢) (58)
E[XY]—¢ E[XY] E[XY](E[XY] —¢)
_ |(EX]E[Y] + E[X]E[XY] + E[Y]E[XY] + €E[XY]) ’ (59)
E[XY]|(E[XY] —¢)
E[X|E[Y] + EX]|E[XY]+E[Y]E[XY] + E[XY] 60
= E[XY]2/2 ’ (60)
=eCy >0 (61)
Combining the max argument bounds, we have that ‘[AEI[AE)[()];E}[}]/] — E]EE)[()}(EQ]I] ’ < emax(C1,Cs) < eCy. Therefore,
i@ —al < E]E*@C? — Cy (62)
[(X]E[X]

where Cj is a positive function of E[X], E[Y], and E[XY]. To recap, this is satisfied if =B and € is small. Let
€ = n~3/%, thus for large enough n, € is smaller than any constant. Recall, Pr(B) < 6 exp(—ne?/2). With this
definition of €, Pr(B) < 6 exp(—n'/4/2).
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Now, we are finally ready to evaluate the limit:

lim nE[ja —al’] = lim n(E[ja — af*|B] Pr(B) + E[|@ — a|*|~B]P(—B)) (63)
n—oo n—oo
< lim n (c§e3 SERC) 6exp(—n1/4/2)) (64)
=C3 lim n(n=3/%)3 4 48 lim nexp(—n'/*/2) (65)
n—oo n—oo
=C3 lim n~1/® 148 lim m* exp(—m/2) =0 (66)
Trivially, lim,,_,» nE[|a — a|?] > 0. Thus, lim, ., nE[|a — a|3] = 0. O
Lemma 5. If (i,7) € E\, then
5ij = Aij - AZCL; - A]’a; - AiAj7 (67)
where
2
A= W(exp(&j) — exp(—0i;))(exp(20;) — exp(—20;)) (68)
15 %45
2
Aj= W(exp(eij) — exp(—0;))(exp(26;) — exp(—26;)) (69)
(3 z]
2
Ay = W(GXP(GU) — exp(—0i;)) (exp(20;) + exp(—=20;) + exp(20;) + exp(—20;)) (70)
(3 Z]
2
a; = —- exp(6;)(exp(f;) + exp(—0;)) — 1 (71)
ij
2
ay = - exp(0;)(exp(6;) + exp(—6;)) — 1 (72)
ij
Zij = Z exp(slﬂi + sjé?j + Sisjeij) (73)
zi; = Z exp(sib; + s;0;) (74)

Using these values, it is also possible to verify that ;; € (0,1) if 6;,0;,0;; > 0.
Proof. We define a new distribution, which we denote by Pr’ and E’:

1 m
Pr(Y,A) = exp (ey +3 0+ Y ekl)\k)\l). (75)
i=1 (kD)(0.3)

This distribution uses all the same canonical parameters as (?7) except 6;;\;\;. We know that for this distri-

bution, E' [A\;A;] = E' [\;Y]E' [A\;Y]. Our approach to compute €;; = E [A;A;] — E [\ Y]E [A;Y] is to bound the

differences between E and E’.

First, we evaluate E [\, Y]—E [A\;Y]. We write E [\;Y] as2Pr(\Y =1)—1= %Pr(/\i =1Y =1)-1land E'[\;Y]

as 2Pr'(\; = 1,Y = 1) — 1 by Lemma [2, where p = Pr(Y = 1). Then, letting s_; represent all combinations of
P

labels on all X besides \;,

9 0:;1,) 1
A =ENY]-E [\NY] = 5 > exp (91/ FO0+Y O+ Y oklsksl) (GXP(Z”) - Z) (76)
s k#i (k,D)#(4,5)

Next, note that p = 2% and p = %, where zy = Y exp(fy + >, Oksi + Dok Irisksy + 0ijsis5) and
2y =Y exp(fy + >, bisi + Do (k)i j) Orisks) (we can check these expressions for p are equal, since the
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edgewise potentials are canceled out). A; is now

0i;l; 1
2exp Zexp <9y + Zekzk + Z 9k18k81> <exp( - ) z’> (77)
Y

ki (k1) £(i.5) v
0 1
=2exp(6; + 0;) Z exp <9y + Z Ol + Z 9k18k81> (exp() _ z/> (78)
— oy (kD) (0,5) e Y
1
+2exp(0; — 0;) Z exp <9y + Z Orli + Z 9k15k5l) (eXp() - ,) (79)
— oy (k) (i,5) v ¥

+0,; .
exp(ZY i) i can be written as zle/Y Yogexp(ly + > Ops) + Z(k,l);ﬁ(i,j) Or15},.57) (exp(£6;5) — exp(Gws;s;))

le; (exp(0; — 0;) + exp(—0; + 0;)) >, exp(Oy + >4, ;0ks), +
2ok (i.5) Omsis)) (exp(bi;) — exp(—b;5)), and for negative —0;;, this becomes ZY1Z4Y (exp(0; + 0;) + exp(—0; —

0;)) > . exp(fy + Zk#,j Orsy, + Z(kJ)#iJ) Or15).s;)(exp(—b;;) — exp(6;;)). Then, our expression becomes

2' < Z exp (ay + Z Orly + Z 9kl5ksl>>2(exp(9ij) — exp(—0i;)) (80)

Ry N kg (k,0) #(0,)
x (exp(0; + 0;)(exp(6; — ;) + exp(—0; + 0;)) — exp(0; — 0;)(exp(0; + 6;) + exp(—0; — 6;))) (81)

Then for positive 6;;, this becomes

The second line simplifies exp(26;) + exp(260;) — exp(26;) — exp(—26,) = exp(26;) — exp(—26;). Lastly, note
that zy = ZLM exp (9Y + Dk Okl + 2y 26i) lesksl) DI 5 exp(s;f; + s;0; + sis;b;;), and 24 =
ZLM exp (Qy + Zk;ﬁm 01l + Z(kyl);é(i’j) lesksl) -Zsi,g exp(s;0; + s;0;). Canceling out the summations over
the other sources, we have our desired expression for A;. We can do the same to get our result for A;.

Next, we compute A;; = E [\ \;]—E’ [\;\;], which is equal to 2(Pr(\; = 1,\; = 1)=Pr'(\; = 1, \; = 1)+Pr(\; =
-1, =-1)—-Pr'(\;=—-1,\; =-1)):

Pr()\l = 17)‘j = ].) - Pr'()\i = ].7)\]' = ].) (82)
0;; 1
= Z exp (HyY +6,Y +0;Y + Z 0rsLY + Z eklslcsl) (eXp(ZJ) — Z’) (83)
Y,S_i'j k?ézv.] (kvl)e(i’j)
Pr(\ = —1,A; = —1) = Pr'/(\; = =1, = —1) (84)
L 1
= Z exp (HyY —0;Y —0;Y + Z Ors.Y + Z 9k18k81) (eXpéem) — Z’) (85)
Y,s_;; k#i,j (k,1)e(,5)

We can write % — % as 5 >_y,s €XP (OyY + 3251 OrskY + Do) £ () Orisist) (exp(0s;) — exp(0:58:5;5)),
which is equal to 7 (exp(0;) — exp(—0i;))(exp(6; — 0;) + exp(—0; +6;)) Xy, exp (OyY + 30, ; OxsrY +
Z(k,l#(i,j) lesksl). Therefore, A;; is equal to

0, 1
Aij 9 (expé J) _ Z/) Z exp (9yY + Z OrsLY + Z Oklsksl)(exp(HiY + QJY) + eXp(—QiY — QJY))

Yis 1 k#i,j (kD)E(i,5)

(86)

2
=Z,Z(exp(9ij) — exp(—0i;))(exp(b; — 0;) + exp(—0; + 6;))(exp(6; + 0;) + exp(—0; — 6;)) (87)

2
X ( Z exp (oyY -+ Z OpsLY + Z olekSl)) (88)
Y,Sfi,j k#i,j (k,l)e(l,])

2

=iz (exp(bs;) — exp(—0;;))(exp(26;) + exp(—26;) + exp(26;) + exp(—26;)) (89)

X ( Z exp (9yY—|— Z OrsrY + Z lesksl)) (90)

Yis i k#i,j (k,1)€(4,5)



Manuscript under review by AISTATS 2021

Note that Z = 3y, exp(OyY + D i OuskY + D0 e, Ousest) Doy, 5, exp(sii + 5;0; + sis;0i;) and

= Zy,s_q;,j exp(OyY + Zk;ﬁi,j 0rs;Y + Z(k’l)e(m) OriSks1) Zsi,s exp(s;f; + 5]9 ). Plugging this back in and
canceling out summations, we obtain our desired result for A,;;.

We now can compute €;;:

eij = B NA] —ENYTE Y] =E [NA] 4+ Ay — (B [NY]+ Q) (B [\Y] + 4y) (91)

Lastly, we compute E’ [A\;Y] and E’ [A;Y7]:

B \Y]=2(Pr'(\ =1,Y = 1)+ Pr(\ = —1,Y = —1)) - 1 (93)
2
=2 exp(0)(exp(0;) + exp(~0,)) (o)
X Z exp ( Z lesksl) (exp (9y + Z Gksk) + exp ( — Oy — Z Oksk)> -1 (95)
P (k1) (i) oy Py

Z' can be written as -, exp(sifi+5;0;) 3>, exp (Z(k e eklsksl) (GXP(9y+Zk¢i,j Orsi) +exp(—by —
D kot kak)), Therefore E' [A;Y] is equal to

2exp(0;)(exp(0;) + exp(=0;))
> sis; €xp(sifi + 556;)

E' [\Y] = —1 (96)

The key takeaways from this Lemma are:

1. Impact of misspecification in our computations exhibits some form of Lipschitzness, i.e. it is bounded in
terms of the canonical parameters of our distribution.

2. One misspecified edge only contributes error defined in terms of the canonical parameters on the two vertices
and the unmodeled edge between them.

3. Under our assumptions, €;; > 0.

O
Lemma 6. In the case of unlabeled data, accuracies estimated using the triplet method in satisfy
1 2
En - ~ = rmn
N’ [az ] h 2 \Y nU \/ mln mln + b12111n)
3 — b2 1 2
E - Ni —a; 2 < . min

e[ =0 < o (bfmn ‘i)

Proof. First, note that Exnr ; [G; — @;] = En.r [IET {dgj’k)} — Zil} =En - [dgj’k) — Zil}. Therefore, is it sufficient

{(J:)

to produce an upper bound on Exs — @il A, )\k} independent of j, k. For ease of notation, we efer to this

expectation as E [@; — ;). Then, Efa; —a;] = E {i;gj < 2br1nm]E [la? —a@?|]. Denote M;; = E[X\A;] and
M;; = B [A\i);]. Then, by definition of our estimator in @,

L 1 M My, - My | - My,
Ela; —a;] < E | =Y |M*ka~k‘+7j|Mikaik|+ ‘M7 — M| (97)
2bmin leijk / J Mk M J J
1
< —FE | 5—10; — |6 5Z
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1 0 1 2 3 4 5 6 7 8 9
Accuracy | .6893 .6072 .5954 .6603 .6939 .6346 .7462 .6870 .6462 .6284

Table 3: The source accuracies used for synthetic experiments. They were each drawn uniformly from [.55,.75].

where d;; = Mij — M;; is the estimation error for the pairwise expectations. Using Cauchy-Schwarz inequality,

_ ~ 1 1 2
E[ai—ai]ﬁ%min bfnln—’—brznln [\/62—1—6 +(52}
1
< . b2 Var M;; —|—Var< lk)—!—Var( ]k)
~ — M2
Formally, M;; = %Z}iﬁ )\é)\é. Therefore, Var (M;;) = 1% i W E [)\12)\12] — ij = % < %, and our

bound becomes

a 5 mm ]‘ 2
N [ai ] ~2 \ nuy \/ mm bfnln biun)

Next, to bound E - [(@; — @;)?], it is sufficient to upper bound Er [(’di - ELZ(-j’k))Q | A, /\k} independent of choice
of j and k. Refer to this expectation as E [(Ei — di)Q]. Then, E [(’di — z‘zi)z] =E [((aai;Zj))j} < 4b§jinE [(Ef — EL?)Z].
Similar to (97),

N 2
~ _ 1 M1 Mzk MZ 9 M'Lk
E [(@; —a;)?] < E J M ; | My, — M; M;; — M;; 98
[(az a;) } = b (Mjijk| b — Mjk| + Mjk| ik ikl + —— M, | Mi; Z]|> (98)
1 1 2
< B | (ot + loal + ;164 ] (%9)
1
<
= 4b3mn (bfm 2. ) (Var (i) + Var (e ) + Var (3¢ (100)
— b2, 1 2
<2 . min 101
<o () Hon

E Additional Experimental Details

E.1 Synthetic Experiments

In this section, we first provide our protocol for generating synthetic data, which is fixed across our synthetic
experiments. We then discuss the details of the experiments performed for each of the plots in and

Generating synthetic data We use the same synthetic data distributions for all of our synthetic experiments.
We set the number of sources to m = 10, and draw accuracies uniformly from [.55,.75], both of which would be
typical in relevant applications (ex., in weak supervision). We report these accuracies in For experiments
with dependencies, when d = 1 we add the edge (0, 1), when d = 2 we add a second edge (2, 3) and so on. Every
dependency is fixed at €;; = E[\;\;] — E[AJE[A;] = 0.1.

Excess generalization error We measure the expected excess generalization error for several
different estimators and values of n. For each value of n, we take 1000 samples and measure the generalization
error of an estimator trained on this sample. We average the results over these 1000 samples.
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Well-specified Setting Misspecified Setting Corrected Setting
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Figure 7: Excess generalization error and associated combination weight o for an optimally weighted combination of
labeled and unlabeled estimators, and a combination weighted according to |Green et al.[ (2005) across the well-specified
(left), misspecified (center), and corrected (right) settings. The number of unlabeled points is fixed at ny = 1000.

Computing the data value ratio We compute the data value ratio for unlabeled models with
mean and median aggregation for different numbers of dependencies d. The definition of the data value ratio
requires finding the smallest ny, with which learning from ny, labeled points achieves lower expected generalization
error than learning from ny unlabeled points. To measure the expected generalization error for some n, we
average over 1000 samples, which would be intractable to do for every ny. So, we measure the expected
generalization error for every ny between 10 and 100, every ny divisible by 2 between 100 and 1000 and every
ny, divisible by 10 between 1000 and 5000. Besides this shortcut, we compute the data value ratio according to
its definition.

Combining labeled and unlabeled data We compare the practical approach of weighting the
unlabeled and labeled estimators according to |Green et al.| (2005), formally defined in section [B.3] with the
optimal weight. We let the optimal weight vary with ny and nr, but not with the specific data points drawn.
In other words, we compute the optimal weight to be that which minimizes the average generalization error over
1000 trials for each ny. On the other hand, the weight from |Green et al.| (2005)) is a function of the learned
accuracies (and thus of the specific data points drawn). In we report the optimal « for each ny (ny is
fixed at 1000) as well as the average weight from |Green et al. (2005) over 1000 trials.

E.2 Real-World Case Study: Weak Supervision

We discuss the weak supervision dataset we create and clarify the details of our experimental protocol for the
real-world case study.

Creating a weak supervision dataset In weak supervision, soft labels from latent variable estimation are
used as an alternative to a hand-labeled dataset. The sources used are usually heuristics which incorporate
domain-specific knowledge about a particular task and can be acquired relatively cheaply. For our real-world
case study, we choose the simple sentiment analysis task of classifying IMDB reviews as positive or negative.
Our sources are defined simply: for a collection of positive sentiment words, output “yes” if the word appears in
the review and “no” otherwise; for a collection of negative sentiment words, similarly output “no” if the word
appears and “yes” otherwise. The specific words used and their sentiments are reported in We select
these words because they are empirically predictive, appear relatively frequently in reviews and are intuitively
associated with positive/negative reviews.

Figure 6| and [Table 1} Experiments with real data We measure excess generalization error, the data
value ratio and the performances of combined estimators for the real-world dataset. Our protocols for these
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Word love like good great best excellent terrible worst bad Dbetter could would
Sentiment + + + + + + - - - - - _

Table 4: The words used as sources for the real-world weak supervision task of classifying IMDB reviews as positive or
negative.

experiments mirror those we used for synthetic datasets, with two key differences: (1) for each trial, we sample
points uniformly from the training set of 40,000 points, since we cannot sample directly from the distribution
and (2) we measure generalization error on the test set, since we cannot compute the expected generalization
error directly.
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