
Efficient Exploration in Linear MDPs with
Nonlinear Confounding Rewards

Anonymous Author
Anonymous Institution

Abstract

Recent theoretical work establishes provably
efficient algorithms using linear function ap-
proximation when the rewards are linear.
However, nonlinear reward signals are com-
mon in practice. We therefore seek to con-
struct similarly provably efficient algorithms
using linear function approximation—even
when the underlying value function is non-
linear. We extend the linear Markov de-
cision process setting to consider a reward
structure that has a linear component, con-
founded by a nonlinear adversarial baseline
reward that is out of the agent’s control.
We show that knowing the linear component
of the reward is sufficient to learn an opti-
mal policy, and therefore propose to isolate
the linear component by averaging out the
nonlinear confounding reward via importance
sampling. Our algorithm combines this with
optimism under uncertainty exploration to
provably achieve a regret bound of Õ(T 3/4),
where T is the total number of steps. This
contrasts recent work, which suffers from lin-
ear regret due to the additional nonlinear re-
wards.

1 Introduction

Many existing reinforcement learning (RL) algorithms
[Mnih et al., 2015; Gu et al., 2017] require huge
amounts of data to explore the environment and learn
good decisions. This amount of data may be infeasible
or too costly to support in domains that involve inter-
acting with people, like an online shopping session or
an application providing healthy living nudges. Thus

Preliminary work. Under review by AISTATS 2021. Do
not distribute.

we seek RL algorithms that learn with provable effi-
ciency guarantees in complex domains. In some impor-
tant cases, the complexity of domains may come from
aspects outside the control of the decision-maker : e.g.,
a customer’s shopping experience may be influenced
by the number of other household members using in-
ternet bandwidth, the amount of sleep they had last
night, and whether they are worried about an upcom-
ing election. Ideally, an RL algorithm’s learning ef-
ficiency would only depend on the complexity of the
aspects of the reward impacted by the RL algorithm’s
choices, but we don’t typically have access a priori to
a model of these additional complexities.

Function approximation is a popular approach to
learning in such complex spaces. However, such ap-
proaches have long been known to have potential
shortcomings: results in the mid-1990s illustrated how
popular algorithms could fail to even converge in cer-
tain cases [Baird, 1995]. In recent years there has
been significant empirical success by new methods that
largely avoid such instabilities, but the theory of RL in
complex, large state or action spaces remains largely
open.

Recent progress on theoretical RL with function ap-
proximation provides promising regret guarantees un-
der strong restrictive assumptions, such as linear dy-
namics and reward models [Yang and Wang, 2020;
Zanette et al., 2020a; Jin et al., 2020b], or requiring
that the value function can be represented as a lin-
ear structure with zero or low inherent Bellman er-
ror [Zanette et al., 2020b]. Unfortunately, when such
strong assumptions are violated, existing approaches
typically provide no performance guarantees or in-
cur additional linear regret if the algorithm is pro-
vided a bound on the amount of model misspecifica-
tion. Closer to our previously described setting with
decision-independent aspects is algorithmic work [Di-
etterich et al., 2018; Chitnis and Lozano-Pérez, 2020]
that assumes some part of the state space may be
(approximately) independent of the agent’s actions,
but it does not consider strategic exploration or offer
performance guarantees. Interestingly, in the 1-step

Manuscript under review by AISTATS 2021

decision-making literature in econometrics and health-
care research, it is quite common to focus on directly
modeling the treatment effect; that is, the difference
in expected outcomes between taking an action (e.g., a
medication, a job training program) vs. taking no ac-
tion. Recent work on contextual bandits [Greenewald
et al., 2017; Krishnamurthy et al., 2018] takes a similar
approach to avoid modeling a potentially complicated
action-independent influence on the reward signal, and
obtains sublinear theoretical regret bounds.

Inspired by these recent bandit results, we seek simi-
lar strong theoretical guarantees in the multi-step RL
setting where rewards may be influenced by a complex
episode-dependent baseline. We assume that the re-
ward at each state-action in an episode consists of two
parts: a simpler reward that depends on the agent’s
actions, and a potentially much more complicated con-
founding reward that is independent of the agent’s
actions and may adversarially vary across episodes.
These assumptions can model scenarios like a shop-
ping browsing session, a customer support phone call,
or health nudges over a day, where we expect that an
external baseline might systematically elevate or de-
press all rewards within an episode. Critically, this
external baseline is unknown. Note that unlike in the
contextual bandit setting, a confounding reward sig-
nal that changes the reward at each state, (even if the
change is independent of the actions), can impact the
optimal policy in RL settings. In contrast, as we show
in Section 4, the confounding reward we consider still
preserves the optimal policy but allows for a richer
set of more realistic modeling assumptions that enable
better robustness.

We present an algorithm, called Action-Centered
Value Iteration (ACVI), that strategically explores
and provably achieves sublinear regret in such spaces
given a linear MDP structure [Jin et al., 2020b]
with episodic confounding (Section 5). Our algo-
rithm builds on optimistic Least-Squares Value Iter-
ation (LSVI) and uses an action-centering approach
from the contextual bandits setting [Greenewald et al.,
2017; Krishnamurthy et al., 2018] to isolate the action-
dependent rewards from the confounding rewards. Un-
like the bandits setting, we must carefully control how
the increased variability of our underlying reward es-
timator impacts the resulting exploration.

The key ingredients of our algorithm are: 1) an op-
timism bonus based on a bi-level upper confidence
bound (UCB) on reward and value function, and 2) a
schedule of the sampling probabilities that eventually
ensures the greedy action is always chosen with high
probability but still provides sufficient uncertainty for
importance sampling as well. Our proposed algo-
rithm achieves Õ(d2H3/2T 3/4) expected regret with

high probability, where d is the dimension of the fea-
ture space, H is the length of the horizon, and T is
the overall number of steps across all episodes. Our
algorithm empirically achieves low regret on synthetic
experiments, while existing (misspecified) optimistic
LSVI algorithms for the linear MDP setting [Jin et al.,
2020b] empirically are not robust to the confounding
reward and achieve higher regret. Our results provide
a useful step towards methods that can handle more
complicated settings while preserving strong theoreti-
cal guarantees.

2 Related Work

Efficient exploration with linear value function
approximation. Function approximation is neces-
sary for reinforcement learning in large state-action
spaces. In recent years, provably efficient exploration
with linear value function approximation has attracted
significant attention. A popular set of frameworks that
yield formal guarantees for exploration are linear/low-
rank MDPs [Yang and Wang, 2020; Zanette et al.,
2020a; Jin et al., 2020b] and their extensions [Wang
et al., 2019, 2020], which essentially assume that any
function will be mapped to a linear function of features
by the Bellman operator. Our work is based on similar
assumptions on transition dynamics and further stud-
ies the case when the reward consists of a linear com-
ponent and a nonlinear baseline component. Several
recent works do not make the linear MDP assumption,
and instead assume policy-value functions are linear
[Lattimore and Szepesvari, 2020] or have low inherent
Bellman error with the linear function class [Zanette
et al., 2020b,c].

Nonlinear, confounding rewards in contextual
bandits. Greenewald et al. [2017] and Krishna-
murthy et al. [2018] propose two different approaches
to learn linear functions to solve contextual bandit
from nonlinear feedback signals. Both assume the non-
linear component only depends on the state in order
to make sublinear regret possible. Though the algo-
rithms and regret guarantees are different, the main
idea of both algorithms is to sample the actions with
additional stochasticity to average out the nonlinear
component. This work extends this idea to tackle se-
quential decision-making problems.

Adversarial MDPs. Previous works for adversar-
ial MDPs mainly consider general adversarial noise
in finite state action spaces (e.g. most recently Jin
et al. [2020a]), and achieves

√
T -regret by leveraging

the ideas from adversarial bandits and online learn-
ing algorithms. Lykouris et al. [2019] consider the lin-
ear function approximation settings but suffer from a

Manuscript under review by AISTATS 2021

linear dependency on the total amount of adversarial
corruptions. Instead, this work assumes a structure
on the adversarial noise such that it will corrupt the
observed rewards but will not change the optimal poli-
cies, thus making sublinear regret with linear function
approximation possible.

3 Problem Setting

In this section, we formally define the problem setting
that we study. We first discuss the preliminaries of the
episodic RL setting (Section 3.1). Then, we formalize
additional assumptions on linear transition dynamics
and nonlinear confounding rewards (Section 3.2).

3.1 Episodic reinforcement learning

We consider a sequential decision process over K
episodes. In the k-th episode, the agent interacts with
an environment defined by 〈S,A,Pr, H, rk〉, where the
initial state can be chosen adversarially. All episodes
share the same states S; actions A = {0, . . . , N};
time-dependent Markov transition dynamics Pr =
{Prh}Hh=1, where Prh(·|s, a) is the distribution over
next states after taking action a at state s on time-step
h; and episode length H. The time-dependent rewards
are rk = {rkh}Hh=1, where rkh(s, a) is the deterministic
reward achieved by taking action a at state s and time-
step h. Notice here that we allow additional flexibility
in reward as rkh(s, a) can vary across the episodes. In
the next section, we will introduce a type of reward
structure we study in this paper so that learning a
Markovian policy is still sufficient. In particular, a
component of the reward (described in Section 3.2) is
allowed to adversarially depend on the initial state of
the episode and the history of states and actions over
the previous k − 1 episodes, H̄k−1 = H1, . . . ,Hk−1,
where Hτ = {sτh, aτh}Hh=1.

We denote the state and action at timestep h on the k-
th episode as skh and akh, which yields reward rkh(skh, a

k
h)

and transitions to skh+1 ∼ Prh(· | skh, akh). The agent’s
goal is to learn a policy πk : S × [H] → A, that
maximizes the expected returns given the rk in each
episode. Formally, we define the policy value function
as the expected returns of a policy πk at episode k
starting from state s at time-step h:

V πk
h,rk

(s) := Eπk

[
H∑

h′=h

rkh′(s
k
h′ , πk(skh′ , h

′))
∣∣∣skh = s

]
.

Note that we define the value function at the k-th
episodes given that the reward specification rk is fixed.
Then, we define the cumulative regret over K episodes
of a policy {π1, . . . πk} with respect to the optimal pol-

icy as:

Regret(K) :=

K∑
k=1

sup
π
V π1,rk(s)− V πk

1,rk
(sk1). (1)

3.2 Linear MDP with confounding rewards

A common assumption [Jin et al., 2020b] is that the
rewards and transition dynamics are linear in a feature
map φ : S × A → Rd, which further implies a linear
value function. We similarly assume that the dynamics
take the following linear form:

Prh(· | s, a) = φ(s, a)>µh(·),

where µh(·) ∈ Rd is an unknown measure such that
φ(s, a)>

∑
s′∈S µh(s′) = 1 for all s, a, h.

However, as rewards are often non-linear in practice,
we seek a more complex and adversarial reward struc-
ture. To do this, we consider rewards that consist
of: (1) a linear reward component rlin, that is still
linear in φ(s, a); (2) a non-linear confounding reward
component rconf , which, on episode k, may adversari-
ally depend on the history of states and actions H̄k−1,
and the current episode’s initial state sk1 ; and (3) inde-
pendent sub-Gaussian noise. The confounding reward
component represents a baseline signal that is indepen-
dent of the interaction with the agent, but can often be
more complex due to the complexity of environment.

Following Greenewald et al. [2017], we also assume
there is a default action a0,h ∈ A (often represented
as 0) corresponding to “doing nothing” at timestep h.
Only the non-linear confounding reward is observed
when this default action is taken, and we only incur
the baseline reward caused by factors out of the agent’s
control. More precisely, we assume the following re-
ward structure for all s, a, h, k:

rkh(s, a) 〈φ(s, a), θh〉1 {a 6= ah,0}︸ ︷︷ ︸
linear reward rlinh

+ fkh
(
sk1 ; H̄k−1

)︸ ︷︷ ︸
rconfh,k

+ εkh︸︷︷︸
noise

,

where fkh is a bounded function and the agent can only
observe a real-valued reward rkh(s, a) rather than the
decomposition or parameters θh and fkh . Note that
the linear term rlin is the same across all episodes,
while the confounding reward rconf may adversarially
change. For our analysis, we assume that ‖φ(s, a)‖ ≤
1; ‖θh‖, ‖µh(S)‖ ≤

√
d; |rlin

h | ≤ 1, |rlin
h + rconf

h,k | ≤
rmax < ∞; and each εkh is independent and σ2 sub-
Gaussian.

Manuscript under review by AISTATS 2021

4 Equivalence in Optimality to Linear
MDPs

Learning the value function in this setting can be
very challenging due to the confounding rewards rconf ,
which can be arbitrarily complex. However, we show
below that the optimal policy for our setting depends
only on the much simpler linear reward component
rlin, and not on the nonlinear confounding component
rconf . It is thus possible to learn the optimal policy by
estimating the linear reward component (Section 5).

To see that the optimal policy only depends on the lin-
ear reward component rlin, we decompose the value-
function into the returns due to the linear reward com-
ponent and the returns due to the confounding rewards
and noise, similar to Dietterich et al. [2018]:

V πk
h,rk

(s) = Eπk

[
H∑

h′=h

rlin
h (skh, a

k
h)

∣∣∣∣skh = s

]

+

H∑
h′=h

fkh
(
sk1 ; H̄k−1

)
Only the first term, which is just the returns due to
the linear reward component, depends on the actions
akh and the policy in the current episode. Therefore,
the optimal policy π?k := arg maxπk V

πk
h,rk

only depends
on the linear reward component and is independent
of the confounding rewards and noise. In addition,
rlin
h is constant across different episodes, so there is an

optimal policy π? that is stationary across episodes,
(i.e., π?k = π?k′ for all k, k′ ∈ [H]).

In particular, we notice that π? is optimal for the linear
MDP M = 〈S,A, H,Pr, rlin〉, which can be viewed as
setting the confounding rewards and noise to be 0. So
we define the policy value function in this MDP as

V πh,M = Eπ

[
H∑

h′=h

rlin
h′ (sh′ , π(sh′ , h

′))
∣∣sh = s

]
.

For the ease of notation we will use V πh in the rest of
this paper to refer to the value function V πh,M in the
linear MDP. Notably, the regret with respect to the
overall reward as we defined in Equation 1 is the same
as the regret in the linear MDP M:

Regret(K) =

K∑
k=1

V π
?

1 (sk1)− V πk1 (sk1), (2)

We denote the value function of the optimal policy
as V ?h (s) := V π

?

h (s) and Q?h(s, a) as the corresponding
state-action value function which is defined similarly.
Notice that the value function and state-action value
function satisfy the Bellman equations:

Q?h(s, a) = rlin
h (s, a) + E

[
V ?h+1(sh+1)|sh = s, ah = a

]
,

where V ?h (s) = maxa∈AQ
?
h(s, a) and V ?h+1(s) = 0.

Plugging the linearity of reward and transition dynam-
ics in, it is easy to verify that Q?h(s, a) is a linear func-
tion of the feature map φ(s, a). Furthermore, it can
be verified that the value function of any policy is a
linear function of φ(s, a) by the Bellman equation for
policy evaluation.

5 Action-Centered Value Iteration

We now present a provably efficient exploration algo-
rithm, which rests on our key insight that the opti-
mal policy is not impacted by confounding rewards.
Since only the overall reward rkh(s, a) can be observed
rather than rlin, we seek to estimate rlin via the action-
centering trick [Greenewald et al., 2017]: importance
sampling between the default action and greedy ac-
tion (section 5.1). This yields our algorithm, Action-
Centered Value Iteration (ACVI), which combines
least-squares value iteration, used to learn the linear
value function Q?h(s, a), with action-centered reward
estimates in Section 5.2.

5.1 Estimating the linear reward component

Given the reward structure, it would be trivial to es-
timate the linear reward part if we could take two ac-
tions at each timestep. We could take the difference
between the reward of the default action, which only
consists of rconf , and any other action, which gives us a
value that is linear in expectation in the feature map:

Eεkh
[
rkh(s, a)− rkh(s, a0,h)

]
= 〈φ(s, a), θh〉 (3)

Though only one action can be taken at each timestep,
this intuition inspires a randomization mechanism to
estimate the reward difference. We randomly sample
between the default action a0,h and the greedy action
at that timestep, denoted as ākh, to determine akh. (The
greedy action can be the default action.) Let pk =
Prk(a0,h) be the probability of choosing the default
action for any h during episode k, which we refer to as
the sampling schedule. Then, define the estimator

r̂kh(s, a) = (1
{
a = ākh

}
− (1− pk))rkh(s, a). (4)

Its expectation over the sub-Gaussian noise and the
randomization between the default and greedy action
is

Eεkh,akh
[
r̂kh(s, akh)

]
(5)

=Eεkh
[
(1− pk)pkr

k
h(s, ākh)− pk(1− pk)rkh(s, a0,h)

]
=pk(1− pk)〈φ(s, ākh), θh〉

Therefore, we can learn an estimate θ̂kh based on the
previous k − 1 episodes for each θh using r̂kh(skh, a

k
h),

Manuscript under review by AISTATS 2021

Algorithm 1 Action-Centered LSVI (ACVI)

1: Input: K,H,α, λ, pk, βk ∀ k ∈ [K]
2: for k = 1, . . . ,K: do
3: Receive sk1 .
4: for h = H, . . . , 1 do
5: Estimate θ̂kh = (Bkh)−1b̂kh for b̂kh =

∑k−1
τ=1 r̂

τ
hφ

τ
h,

Bkh = αI +
∑k−1
τ=1 ητφ

τ
hφ

τ>
h .

6: Set Λkh = λI +
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)>.

7: Update weight estimate of value function
wkh = (Λkh)−1

(∑k−1
τ=1 φ(sτh, a

τ
h)[〈φ(sτh, a

τ
h), θ̂kh〉

1 {aτh 6= ah,0}+ maxaQ
k
h+1(sτh+1, a)]

)
.

8: Set value function Qkh(·, ·) = min{〈wkh, φ(·, ·)〉
+ βk

√
φ(·, ·)>(Λkh)−1φ(·, ·), H}.

9: end for
10: for h = 1, . . . ,H do

11: akh =

{
ah,0 w.p. pk

ākh = argmaxaQ
k
h(skh, a) otherwise

12: end for
13: end for

which is observable. However, we do not want pk to
be constant across all k since taking the default action
with a fixed probability as k increases incurs linear
regret. This implies that the variance of each r̂kh is
different across k. We use weighted ridge regression
to estimate each θh, where the objective function to
minimize over θ is:

k−1∑
τ=1

ητ

(
r̂τh
ητ
− 〈φτh, θ〉

)2

+ α‖θ‖22 (6)

for some α ≥ 0, where we’ve used notation ητ = pτ (1−
pτ), r̂τh = r̂τh(sτh, a

τ
h), φτh = φ(sτh, ā

τ
h). Solving (6) gives

us the closed-form solution θ̂kh = (Bkh)−1b̂kh, where

Bkh = αI +

k−1∑
τ=1

ητφ
k
hφ

k>
h , b̂kh =

k−1∑
τ=1

r̂τhφ
τ
h. (7)

5.2 Our Algorithm

Now that we have discussed how the optimal policy
is not impacted by the confounding term and how
to compute θ̂kh, we explain how these ideas are used
in ACVI, described in Algorithm 1. First, after each
episode, we calculate θ̂kh for each h and then use this
to estimate the linear component of the reward as
ˆrlin
h(s, a) := 〈φ(s, a), θ̂kh〉 in line 5. This reward es-

timate is then used in the standard LSVI framework
[Bradtke and Barto, 1996; Osband et al., 2016], which
aims to learn the optimal policy by iteratively fitting
a linear function 〈w?h, φ(s, a)〉 to the Bellman update

of Q?h(s, a); that is, our estimate wkh in line 7 is the
closed form solution to

argminw

k−1∑
τ=1

(ˆrlin
h(sτh, a

τ
h) + max

a∈A
Qkh+1(sτh+1, a)

− 〈w, φ(sτh, a
τ
h)〉
)2

+ λ‖w‖2.

After wkh is estimated, in line 8 we construct our es-
timate of the value function, Qkh, which contains an
additional UCB bonus term to encourage exploration.
This UCB term has a βk constant that is used to cap-
ture the uncertainty from both estimating the reward
and the value function, such that with high probability
Qkh(s, a) ≥ Q?h(s, a) for all (s, a). We also control the
magnitude of our approximation Qkh by noting that
the action-value function should always be less than
H under our assumption |rlin

h | ≤ 1. Lastly, we use
this updated value function to select a greedy action
ākh, and we randomize between this action and the de-
fault action according to the sampling schedule pk in
lines 10-11. This action centering is necessary for us
to produce accurate estimates of θ̂kh.

6 Regret Analysis

We present our main theoretical result, the sublinear
expected regret bound for ACVI, and provide a proof
sketch. We then compare our results to prior regret
bounds.

Theorem 1. Set λ = 1, α = 1, pk = 1
(k+1)1/4

, and δ ∈
[0, 1]. There exists an absolute constant cβ > 0 such

that if βk = cβd
√
ι
(
H + (rmax+2σ2)

√
d

ηk−1
1 {k > 1}

)
,

where ι = log dT
δ , then the expected regret of Algorithm

1 is O((rmax + 2σ2)d2ιH3/2T 3/4) with probability at
least 1− δ.

This theorem shows we can achieve sublinear regret by
carefully setting a sampling schedule pk and particular
UCB bonus structure βk. This bound scales with the
number of steps, the horizon, and the dimension of
the feature map, which are all standard parameters
in linear MDP’s regret analysis, and is independent of
confounding reward structure beyond magnitude.

6.1 Proof Sketch

The proof of theorem 1 involves three main parts: 1)
bounding the error of the estimated linear reward com-
ponent, 2) bounding the error of the value function
approximator, and 3) setting a sampling schedule that
balances exploration, exploitation, and learning the
linear reward. We discuss our results for each and
how they impact the cumulative regret bound.

Manuscript under review by AISTATS 2021

Bounding the linear reward estimation error.
It is clear that the ability to estimate θh accurately
will affect the regret of the algorithm since this impacts
the approximation of the value function. We apply the
result of Theorem 1 of Abbasi-Yadkori et al. [2011] for
self-normalized processes to produce a concentration
inequality on b̂kh first and then propagate it to produce
a bound on the accuracy of the linear reward estimate.

Lemma 1. Fix δ′ > 0 and pick any s, a, h, k. For θ̂kh
defined in Algorithm 1 and k > 1, with probability at
least 1− δ′

T ,

|〈φ(s, a), θh − θ̂kh〉| ≤
√
dφ(s, a)>(Bkh)−1φ(s, a) (8)

×
(rmax + 2σ2

2
√
ηk−1

·
√

log
Tk

δ′
+ 1
)
.

When k = 1, |〈φ(s, a), θh− θ̂kh〉| is trivially at most
√
d,

since θ̂1
h = 0.

As k increases, the term
√
dφ(s, a)>(Bkh)−1φ(s, a) de-

creases. However, note that 1√
ηk−1

= 1√
pk−1(1−pk−1)

≈
1√
pk

, showing how pk significantly impacts the estima-

tion error.

Bounding the value function estimation error.
The next challenge is to understand how this reward
estimation error impacts exploration. To determine
the UCB bonus, we consider the difference between
the true value function and our linear approximation:
the gap between 〈wkh, φ(s, a)〉 and Q?h(s, a). Recall
that in the linear MDP setting, the value function re-
gardless of policy is linear. In particular, Qπh(s, a) =
〈wπh , φ(s, a)〉, where wπh := θh +

∫
V πh+1(s)dµh(s) for

any policy π. If the linear reward were observable,
both wπh and wkh would be defined in terms of θh;
however, our analysis must account for fact that wkh
is instead constructed using θ̂kh estimated via action-
centering. We define an upper confidence bonus that
ensures optimism by incorporating both the reward
estimation error of Lemma 1 and the standard value
function estimation error (under no confounding).

Lemma 2. For any s, a, h, k, with probability at least
1 − δ there exists a constant cβ such that for βk =

cβd
√
ι
(
H
√
d+ (rmax+2σ2)

√
d

ηk−1

)
, ι = log dT

δ , and any

fixed policy πk, we have that

〈wkh, φ(s, a)〉 −Qπkh (s, a) ≤
E
[
V kh+1(skh+1)− V πkh+1(skh+1)|skh = s, akh = a

]
+ βk

√
φ(s, a)T (Λkh)−1φ(s, a),

where V kh (s) = maxa∈AQ
k
h(s, a).

Notice that βk has two parts, and the sec-
ond part depends on our reward estimation er-
ror. This is because there is an additional term
in the decomposition of 〈wkh, φ(s, a)〉 − Qπkh (s, a),

namely φ(s, a)>(Λkh)−1
∑k−1
τ=1 φ(sτh, a

τ
h)〈φ(sτh, a

τ
h), θ̂kh −

θh〉, which captures the role of using θ̂kh instead of θh
in wkh and explains how reward error is propagated.

As illustrated in line 8 of Algorithm 1, this bound is
used to construct Qkh. Via an induction argument on
this bound, we can show that Q∗h(s, a) ≤ Qkh(s, a) for
all s, a with probability at least 1− δ.

Minimizing regret with choice of pk. We have
shown so far that the estimation error of rlin and con-
sequently the UCB bonus both depend on pk. We now
sketch how we derive our regret bound, which captures
a tradeoff that the sampling schedule presents.

We first discuss the challenge in choosing pk. First,
if pk is very small, the default action is sampled in-
frequently, and the estimation error of the linear re-
ward is high. This results in a large UCB bonus that
dominates the linear approximation 〈wkh, φ(s, a)〉, and
intuitively our agent may explore too much. However,
sampling the default action less results in the agent
being able to follow the learned policy Qkh more of-
ten. On the other hand, when pk is large or clipped
to some range in (0, 1) as in Greenewald et al. [2017],
action-centering yields a better estimate of the reward
that also leads to a better linear approximation of the
value function intuitively. However, having a constant
clipped probability of taking a default action across all
k will certainly result in linear regret.

Our approach to bounding the regret is as follows. By
definition of the value-action function, our expected
regret over the action-centering is bounded by

E [Regret(K)] =

K∑
k=1

E
[
Q?1(sk1 , ã

k
1)−Qπk1 (sk1 , a

k
1)
]

≤
K∑
k=1

E
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1)
]
.

The first line follows from the definition of
the state-action value function, where ãkh =
argmaxa∈A Q?h(skh, a). The second line uses the fact
that Q?1(sk1 , ã

k
1) ≤ Qk1(sk1 , ã

k
1) w.p ≤ 1− δ (UCB), and

then the fact that the the greedy action āk1 maximizes
Qk1(sk1 , ·). This expression, however, presents a chal-
lenge since ak1 and āk1 are not always the same.

We address this by considering two cases for each
episode depending on if the agent selects any default
action throughout the kth episode. For each k, define
the event Ek that akh = a0,h for at least one h ∈ [H].

Manuscript under review by AISTATS 2021

Then our regret bound becomes

K∑
k=1

E
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1)|Ek

]
Pr(Ek) (9)

+

K∑
k=1

E
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1)|ECk

]
Pr(ECk) (10)

In the first line, Pr(Ek) = 1− (1−pk)H , and expected
regret of the episode conditioned on at least one de-
fault action being taken is trivially bounded by 2H.
Then regret due to choosing default actions in (9) is
bounded by

2H

K∑
k=1

(1− (1− pk)H) ≤ 2H2
K∑
k=1

pk (11)

after using the fact that (1 − pk)H ≥ 1 − Hpk. In
the second line, with probability Pr(ECk) = (1− pk)H ,
the agent will follow the greedy trajectory through-
out the kth episode, in which case our expected re-
gret per episode, E

[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , ā

k
1)|ECk

]
, is

now defined on the same state-action inputs. For this
case, we write Lemma 2 recursively to decompose the
regret as a summation over a martingale difference
sequence for the value function estimate and a sum-
mation of the UCB bonuses accumulated across all
h and k. The former can be bounded using stan-
dard concentration inequalities to get a regret less
than c1H

√
Tι for some constant c1 independent of

pk. The summation over UCB bonuses is of the form

c2ιHd
3/2
(
H
√
K+(rmax +2σ2)

(∑K
k=1

d
p2k(1−pk)2

)1/2)
for some independent constant c2. Therefore, our re-
gret bound in terms of the sampling schedule can be
written as

E [Regret(K)] ≤ c1H
√
Tι+ c2ιH

2d3/2
√
K

+ c2ιHd
3/2(rmax + 2σ2)

(K∑
k=1

d

p2
k(1− pk)2

)1/2

+ 2H2
K∑
k=1

pk

This expression formalizes the tradeoff previously dis-
cussed: large pk incurs regret from taking the default
action too frequently, while small pk makes the UCB
bonus large. Taking pk to be of order 1

k1/4
minimizes

the above expression and yields a regret of order T 3/4.

6.2 Comparison to other approaches and
bounds

We now discuss our analysis and bounds with re-
spect to two algorithms from Jin et al. [2020b] that

provide guarantees under the linear MDP and “ζ-
approximate” linear MDP.

Algorithm 1 of Jin et al. [2020b] (LSVI-UCB) assumes
that true reward is exactly rlin, and under such a set-
ting their algorithm attains regret O(

√
d3H3Tι2) ac-

cording to their Theorem 3.1. They are able to directly
use the reward in estimating wkh, and there is no need
to do action-centering or learning of θh. As a result,
their UCB bonus β is of order dH

√
ι whereas our βk re-

quires an extra term of order (rmax+2σ2)d3/2
√
ι

ηk−1
to factor

in the estimation error for the linear reward. There-
fore, the additional action-centering and learning of
the linear component of the reward in our nonlinear
setting increases regret by T 1/4 but is still sublinear.

Theorem 3.2 of Jin et al. [2020b] considers a mis-
specified setting that encapsulates our confounding re-
ward assumptions: they assume that 1) rewards are
“close” to linear, i.e. |rh(s, a) − 〈φ(s, a), θh〉| ≤ ζ and
2) transition dynamics are approximately linear, i.e.
‖Prh(·|s, a) − 〈φ(s, a), µh(·)〉‖TV ≤ ζ. Under this ζ-
approximate linear MDP, they use knowledge of the
magnitude of misspecification ζ to construct a UCB
bonus with βk of order H(d

√
ι + ζ

√
kd). Using this

βk in their Algorithm 1, which we refer to here as
LSVI-M, rather than β defined previously, yields re-
gret O(

√
d3H3Tι2 + ζdHT

√
ι). We note that keeping

the linear dynamics assumption does not change their
linear regret bound. We observe that their additional
term in βk, ζ

√
kd, is a factor of k1/4 larger than ours.

This suggests that only using knowledge of the magni-
tude of misspecification (i.e. |fkh |) without learning the
linear reward requires more optimism, which explains
the additional linear regret term in their case.

7 Experiments

We evaluate our algorithm on synthetic experiments
for the linear MDP framework confounded by non-
linear baseline rewards. We find that ACVI achieves
lower average regret than alternatives that do not ex-
ploit confounding structure.

Experimental setup. We construct a linear MDP
and then add confounding rewards to it. For the
linear MDP, we follow an example from Jin et al.
[2020b], where each state s ∈ Rd′ satisfies ‖s‖1 = 1
with nonnegative entries. We construct a feature map
φ(s, a) = s · [1 {a = 0} . . .1 {a = N}]> by slotting the
vector s into the a-th position of a zero vector of length
d = (N + 1)d′. We further require that each e>i µh is
a measure and ‖θh‖1 = 1. We set |S| = 100, d′ = 8,
N = 5 actions, H = 3, and K = 100000. The con-

Manuscript under review by AISTATS 2021

founding reward has an episode-dependent structure:

fkh (·) =
1

10
(z>h s

k
1 + sk1 [h])(−1)h (12)

+
1

10c

(
k −

(⌊k
c
− 1

2

⌉
c+

c

2

))
, (13)

where zh ∼ Unif(−1, 1)d
′
, sk1 [h] represents the hth-

indexed element of sk1 , c = 50000 and b·e represents
rounding. This confounding reward structure has a
component based on initial state and h, and a com-
ponent that oscillates between −0.05 and 0.05 every
50000 episodes, which roughly models periodic exter-
nal influences. This perturbs the linear reward signif-
icantly in magnitude and also makes fitting a linear
approximation to the value function difficult.

Evaluation. We compare the average regret up to
the current episode k, Regret(k), of ACVI with the two
algorithms discussed in Section 6.2, restated below:

1. LSVI-UCB [Jin et al., 2020b]: An algorithm
that ensures provably efficient exploration in lin-
ear MDPs without confounding rewards. It at-
tains sublinear regret when transition dynamics
and rewards are exactly linear. It explores with a
UCB reward bonus of the form β = cdH

√
ι.

2. LSVI-M [Jin et al., 2020b]: A variant of LSVI-
UCB with provable guarantees when transition
dynamics and rewards are ζ-approximately lin-
ear. It yields regret linear in the magnitude of
misspecification ζ. The UCB reward bonus takes
the form βk = cH(d

√
ι+ ζ

√
kd) on episode k.

To determine the UCB constant c > 0 in each case,
we tune the minimum value of c such that Q∗h(s, a) ≤
Qkh(s, a) for all s, a, h, k.

Results. The regret curves for each approach are in
Figure 1.

The average regret of ACVI consistently decreases,
without being impacted by the periodic confounding
reward, and eventually ACVI achieves 25.1% lower
average regret than LSVI-M and 13.3% lower than
LSVI-UCB. Initially, ACVI incurs higher average re-
gret than LSVI-UCB and LSVI-M from frequently
taking the default action to estimate the linear reward
component. However, for LSVI-M, the average regret
increases after a while. We hypothesize that the value
function approximation step attempts to fit a wkh ac-
cording to the initial periodic increase in fkh , however,
this linear approximation is worsened as fkh oscillates,
changing the policy. For LSVI-UCB, the UCB con-
stant was tuned to be very high to counter the fact

Figure 1: Average regret for ACVI, LSVI-M, and
LSVI-UCB. ACVI initially incurs higher regret from
action-centering, but achieves the lowest final regret.

that the UCB bonus does not account for misspecifi-
cation. As a result, the algorithm focuses on exploring
and does not obtain a regret curve as low as ACVI.

We evaluate on other confounding rewards fkh (·) in the
Appendix to show that confounding structure does not
significantly impact our regret. We also empirically
test different values of the sampling schedule pk and
find that our choice of order 1

k1/4
performs best.

8 Discussion

We present a provably efficient exploration algorithm
for an episodic RL setting with linear dynamics and a
nonlinear reward function, composed of a linear com-
ponent and a nonlinear confounding component. We
leverage the fact that the optimal policy only depends
on the linear reward component and estimate this com-
ponent via importance sampling. This enables our al-
gorithm, ACVI, to achieve sublinear regret with high
probability, and our synthetic experiments support our
theoretical findings.

Our work opens several directions for future work.
First, the action centering approach could be appli-
cable to more general reward structures consisting of
some complex latent reward and confounding reward;
the action-centering would simply be done along with
a more complex regression procedure. Second, the
default action assumption could possibly be relaxed
via methods similar to Krishnamurthy et al. [2018].
Lastly, misspecification in both rewards and dynam-
ics contribute the same order terms in the linear MDP
regret bound [Jin et al., 2020b]. It is interesting to con-
sider perturbed nonlinear dynamics models analogous
to the nonlinear confounded rewards we consider.

Manuscript under review by AISTATS 2021

References

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C.
(2011). Improved algorithms for linear stochastic
bandits. In Shawe-Taylor, J., Zemel, R. S., Bartlett,
P. L., Pereira, F., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems
24, pages 2312–2320. Curran Associates, Inc.

Baird, L. (1995). Residual algorithms: Reinforcement
learning with function approximation. In Machine
Learning Proceedings 1995, pages 30–37. Elsevier.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-
squares algorithms for temporal difference learning.
Mach. Learn., 22(1–3):33–57.

Chitnis, R. and Lozano-Pérez, T. (2020). Learning
compact models for planning with exogenous pro-
cesses. volume 100 of Proceedings of Machine Learn-
ing Research, pages 813–822. PMLR.

Dietterich, T., Trimponias, G., and Chen, Z. (2018).
Discovering and removing exogenous state variables
and rewards for reinforcement learning. volume 80
of Proceedings of Machine Learning Research, pages
1262–1270, Stockholmsmässan, Stockholm Sweden.
PMLR.

Greenewald, K., Tewari, A., Murphy, S., and Klasnja,
P. (2017). Action centered contextual bandits. In
Advances in neural information processing systems,
pages 5977–5985.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017).
Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In 2017
IEEE international conference on robotics and au-
tomation (ICRA), pages 3389–3396. IEEE.

Jin, C., Jin, T., Luo, H., Sra, S., and Yu, T. (2020a).
Learning adversarial markov decision processes with
bandit feedback and unknown transition. Interna-
tional Conference on Machine Learning (ICML).

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020b).
Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning
Theory, pages 2137–2143.

Krishnamurthy, A., Wu, Z. S., and Syrgkanis, V.
(2018). Semiparametric contextual bandits. In In-
ternational Conference on Machine Learning, pages
2776–2785.

Lattimore, T. and Szepesvari, C. (2020). Learning
with good feature representations in bandits and in
rl with a generative model. International Conference
on Machine Learning (ICML).

Lykouris, T., Simchowitz, M., Slivkins, A., and
Sun, W. (2019). Corruption robust exploration
in episodic reinforcement learning. arXiv preprint
arXiv:1911.08689.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al.
(2015). Human-level control through deep reinforce-
ment learning. nature, 518(7540):529–533.

Osband, I., Roy, B. V., and Wen, Z. (2016). General-
ization and exploration via randomized value func-
tions.

Wang, R., Salakhutdinov, R., and Yang, L. F. (2020).
Reinforcement learning with general value func-
tion approximation: Provably efficient approach via
bounded eluder dimension. Advances in neural in-
formation processing systems.

Wang, Y., Wang, R., Du, S. S., and Krishnamurthy,
A. (2019). Optimism in reinforcement learning with
generalized linear function approximation. arXiv
preprint arXiv:1912.04136.

Yang, L. F. and Wang, M. (2020). Reinforcement
learning in feature space: Matrix bandit, kernels,
and regret bound. International Conference on Ma-
chine Learning (ICML).

Zanette, A., Brandfonbrener, D., Brunskill, E.,
Pirotta, M., and Lazaric, A. (2020a). Frequentist
regret bounds for randomized least-squares value it-
eration. In International Conference on Artificial
Intelligence and Statistics, pages 1954–1964.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brun-
skill, E. (2020b). Learning near optimal policies with
low inherent bellman error. International Confer-
ence on Machine Learning (ICML).

Zanette, A., Lazaric, A., Kochenderfer, M. J., and
Brunskill, E. (2020c). Provably efficient reward-
agnostic navigation with linear value iteration. Ad-
vances in neural information processing systems.

Manuscript under review by AISTATS 2021

Supplementary Materials

A Glossary

The glossary is given in Table 1 below.

Symbol Used for

K Number of episodes.
H Length of the horizon.
T Total number of steps HK.
S State space
A Action space A = {0, . . . N} with N actions.
Pr Transition dynamics {Prh}Hh=1, defined as Pr(·|s, a) for each s, a.
rk Reward function {rkh}Hh=1 defined as rkh(s, a) for each s, a.
skh State the agent is at during the hth timestep of the kth episode.
akh Action the agent takes during the hth timestep of the kth episode.
Hk The history {skh, akh}Hh=1 of states visited and actions taken in the kth episode.
H̄k−1 Total history H1, . . .Hk−1 so far at the kth episode.
πk A policy πk : S × [H]→ A to learn in episode k.
V
πk
h,rk

Policy value function for policy πk at episode k, starting timestep h.

d Dimension of feature map φ.
φ(s, a) Feature map φ : S ×A→ Rd.
µh(·) Measure µh(·) ∈ Rd for linear dynamics.
rlinh Linear component of the reward, which is constant across episodes.
rconfh,k Nonlinear confounding component of the reward, which can vary across episodes.
a0,h Default action. When taken, the agent receives only the confounding reward rconfh,k plus noise.
θh Unknown weight vector in Rd for rlinh .
fkh (·) Confounding reward function, with input sk1 and H̄k−1.
εkh Random σ2 sub-Gaussian noise.
rmax Upper bound on |rlinh + rconfh,k |.
π? Optimal policy for the agent, which is equal to π?k, the optimal policy at each episode.
M A linear MDP 〈S,A, H,Pr, rlin〉 with linear rewards and dynamics.
V πh (s) Policy value function for policy π of linear MDP M, starting from timestep h.
V ?h (s), Q?h(s, a) Optimal value function and action-value function for M corresponding to π?.
pk The sampling schedule, i.e. Pr(akh = a0,h) for any h.
ākh The algorithm’s greedy action at timestep h episode k.
r̂kh(s, a) The reward estimator (1

{
a = ākh

}
− (1− pk))rkh(s, a). r̂kh is equal to r̂kh(skh, a

k
h).

ηk Equal to pk(1− pk) for the kth episode.
φkh Equal to φ(skh, ā

k
h).

w?h Weight vector that satisfies Q?h(s, a) = 〈φ(s, a), w?h〉.
wkh Weight vector estimate at episode k, computed using LSVI.
βk Parameter for the UCB bonus in constructing Qkh at the kth episode.
Qkh Function used in kth episode to choose greedy action at timestep h. V kh (s) = maxaQ

k
h(s, a).

ι Equal to log dT
δ

, such that results hold w.p. at least 1− δ for δ ∈ (0, 1).
Ek Event that akh = a0,h for at least one h during episode k.
ζ Magnitude of misspecification, i.e. |rh(s, a)− 〈φ(s, a), θh〉| ≤ ζ.

Table 1: Glossary of variables and symbols used in this paper.

Manuscript under review by AISTATS 2021

B Assumptions and properties of the linear value function

We review some assumptions on the linear MDP with confounding rewards. Since optimal policy is not impacted
by confounding, we examine the value function for the standard linear MDP, and show that it is also linear.

Assumption 1. Define a feature map φ : S ×A → Rd. For each timestep h and any s, a, we have a confounded
reward at episode k:

rkh(s, a) 〈φ(s, a), θh〉1 {a 6= ah,0}+ fkh
(
sk1 ; H̄k−1

)
+ εkh, (14)

Furthermore, the linear transition dynamics are

Prh(· | s, a) = φ(s, a)>µh(·),

where µh(·) ∈ Rd is some measure measure.

For all s, a, h, k, assume that µh(S), ‖θh‖ ≤
√
d, ‖φ(s, a)‖ ≤ 1, |Eεkh [rkh(s, a)]| ≤ rmax, 〈φ(s, a), θh〉 ≤ 1 and εkh is

σ2 sub-Gaussian.

Next, we restate the Bellman optimality equations for the value function and action-value function for an arbitrary
policy π and the optimal policy. For any s, a, h:

Qπh(s, a) = 〈φ(s, a), θh〉+ E
[
V πh+1(sh+1)|sh = s, ah = a

]
V πh (s) = Qπh(s, πk(s)) V πkH+1(s) = 0 (15)

Q?h(s, a) = 〈φ(s, a), θh〉+ E
[
V ?h+1(sh+1)|sh = s, ah = a)

]
V ?h (s) = max

a∈A
Q?h(s, a) V ?H+1(s) = 0 (16)

(Note that we drop the episode-dependency for sh+1, sh, ah, since the linear dynamics are constant across
episodes). Recall that πk is the policy that the agent takes at the kth episode. Furthermore, let
maxs,a,h,π{|Qπh(s, a)|, |V πh (s, a)|} ≤ Vmax. Using our assumptions, Vmax = H, but we use Vmax throughout
our results to understand how regret depends on the magnitude of reward.

Finally, recall the parameters for which our regret bound holds:

pk =
1

(k + 1)1/4
(17)

βk = cβdι

(
Vmax +

(rmax + 2σ2)
√
d

ηk−1
1 {k > 1}

)
(18)

Lemma 3. Define

wπkh = θh +

∫
V πkh+1(s′)dµh(s′), w?h = θh +

∫
V ?h+1(s′)dµh(s′) (19)

Then

Qπkh (s, a) = 〈φ(s, a), wπkh 〉, Q?h(s, a) = 〈φ(s, a), w?h〉 (20)

Proof. This is equivalent to Proposition 2.3 of Jin et al. [2020b]. By definition of wπkh , we have

〈φ(s, a), wπkh 〉 = 〈φ(s, a), θh〉+

∫
V πkh+1(s′)〈φ(s, a), dµh(s′)〉 (21)

= 〈φ(s, a), θh〉+ Es′∼Ph(·|s,a)

[
V πkh+1(s′)

]
(22)

due to the linear transition model. The same approach holds for w?h.

Manuscript under review by AISTATS 2021

Lemma 4. For any h, k

‖w?h‖ ≤ 2Vmax
√
d (23)

‖wπkh ‖ ≤ 2Vmax
√
d (24)

Proof. We have that wπkh = θh +
∫
V πkh+1(x′)dµh(x′). ‖

∫
V πkh+1(x′)dµh(x′)‖ ≤ Vmax

√
d and ‖θh‖ ≤

√
d. The same

approach holds for w?h.

C Proof of Lemma 1

The goal of this section is to bound |〈φ(s, a), θ̂kh〉 − 〈φ(s, a), θh〉| for any s, h, a, k with high probability.

C.1 Setup for estimator

Recall our reward estimator:

r̂kh(s, a) = (1
{
a = ākh

}
− (1− pk))rkh(s, a). (25)

For τ = 1, . . . , k − 1 and a fixed h (which we omit in indexing), define the following for convenience:

φτ = φ(sτh, ā
τ
h) (26)

ητ = pτ (1− pτ) (27)

yτ =
r̂τh(sτh, a

τ
h)

ητ
(28)

Σk =

k−1∑
τ=1

ητφτφ
T
τ (29)

Using weighted ridge regression with penalty λ = 1, our estimator θ̂kh minimizes
∑k−1
τ=1 ητ (yτ − θ>φτ)2 + ‖θ‖22.

This gives us the closed form:

θ̂kh = (I + Σk)−1
k−1∑
τ=1

ητyτφτ = (Bkh)−1b̂kh. (30)

Bkh = I +

k−1∑
τ=1

pτ (1− pτ)φ(sτh, ā
τ
h)φ(sτh, ā

τ
h)> = I + Σk (31)

b̂kh =

k−1∑
τ=1

r̂τh(sτh, a
τ
h)φ(sτh, ā

τ
h) =

k−1∑
τ=1

ητyτφτ (32)

To write θh in this form, we need to define a filtration Fk = {āk+1
h , sτ+1

h , aτh ∀ τ ≤ k} (e.g. all past actions, all
states up to the current state, and what the greedy action at the current state is). It is true that

E [yτ |Fτ−1] = 〈φτ , θh〉 (33)

Then, θh must satisfy

θh = argminθ

k−1∑
τ=1

ητ (E [yτ |Fτ=1]− 〈φτ , θ〉)2, (34)

Manuscript under review by AISTATS 2021

which is equivalent to

Σkθh =

k−1∑
τ=1

ητE [yτ |Fτ−1]φτ . (35)

For ease of notation, let b̄kh =
∑k−1
τ=1 ητE [yτ |Fτ−1]φτ .

C.2 Computing the reward bound

We define the following:

mτ =
√
ητφτ (36)

ατ =
r̂τh(sτh, a

τ
h)

√
ητ

−√ητφTτ θh (37)

Then mτ is a Rd-valued stochastic process such that mτ is Fτ−1-measurable, and ατ is a martingale difference
process that is Fτ -measurable (it is simple to verify that E [ατ |Fτ−1] = 0). Next, we expand ατ |Fτ−1 and
combine constant terms to get

1
√
ητ

(
1 {aτh = āτh} − (1− pτ)

)(
〈φ(sτh, a

τ
h), θh〉1 {aτh = āτh}+ fτh (sτ1 ; H̄τ−1) + ετh)

)
+ constant (38)

=
1
√
ητ

(
1 {aτh = āτh} (pτ 〈φ(sτh, a

τ
h), θh〉+ fτh (sτ1 ; H̄τ−1)) + ετh(1 {aτh = āτh} − (1− pτ))

)
+ constant (39)

We use the fact that Bernoulli random variables (i.e. the indicator variable above) are 1
4 sub-Gaussian and εkh is

σ2 sub-Gaussian. Then, ατ |Fτ−1 is 1√
ητ

(
rmax

4 + σ2
)
≤ rmax+2σ2

2
√
ητ

sub-Gaussian. Next, define ξk as

ξk =

k−1∑
τ=1

mτατ =

k−1∑
τ=1

√
ητφτ

(
r̂τh(sτh, a

τ
h)

√
ητ

−√ητφ>τ θh
)

(40)

=

k−1∑
τ=1

r̂τh(sτh, a
τ
h)φτ − ητφτφ>τ θh =

k−1∑
τ=1

ητyτφτ − ητE [yτ |Fτ−1]φτ (41)

= b̂kh − b̄kh (42)

We can express θ̂kh − θh in terms of Bkh and ξk.

Lemma 5. For any h, k,

θ̂kh − θh = (Bkh)−1(ξk − θh). (43)

Proof. We can write b̄kh as Σkθh = (Bkh − I)θh. Then (Bkh)−1(ξk − θh) is equivalent to

(Bkh)−1(b̂kh − b̄kh − θh) = (Bkh)−1(b̂kh −Bkhθh + θh − θh) (44)

= (Bkh)−1b̂kh − θh = θ̂kh − θh. (45)

Then, our desired expression |〈φ(s, a), θh − θ̂kh〉| (when k > 1) can be written as follows:

|〈φ(s, a), θh − θ̂kh〉| = |〈φ(s, a), (Bkh)−1(ξk − θh)〉| (46)

= |〈(Bkh)−1/2φ(s, a), (Bkh)−1/2(ξk − θh)〉| (47)

≤ ‖(Bkh)−1/2φ(s, a)‖‖(Bkh)−1/2(ξk − θh)‖ (48)

=
√
φ(s, a)>(Bkh)−1φ(s, a) · ‖ξk − θh‖(Bkh)−1 (49)

Manuscript under review by AISTATS 2021

We can bound ‖ξk − θh‖(Bkh)−1 ≤ ‖ξk‖(Bkh)−1 + ‖θh‖(Bkh)−1 , and ‖θh‖(Bkh)−1 is less than ‖(Bkh)−1/2θh‖2 ≤
√
d,

since ‖(Bkh)−1/2‖2 ≤ 1. Therefore,

|〈φ(s, a), θh − θ̂kh〉| ≤
√
φ(s, a)>(Bkh)−1φ(s, a) ·

(
‖ξk‖(Bkh)−1 +

√
d
)

(50)

We use now use Theorem 1 of Abbasi-Yadkori et al. [2011]. We have that with probability 1− δ′,

‖ξk‖(Bkh)−1 ≤
rmax + 2σ2

2
√
ηk−1

·
√
d log

k

δ′
. (51)

Let δ′ = δ
T (K−1) for some δ > 0. Fix δ > 0 and pick any s, a, h, k. For θ̂kh defined in Algorithm 1 and k > 1, then

with probability at least 1− δ
T (K−1) ,

|〈φ(s, a), θh − θ̂kh〉| ≤
√
dφ(s, a)>(Bkh)−1φ(s, a) ·

(
rmax

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 1

)
. (52)

When k = 1, |φ(s, a), θh − θ̂kh| is trivially at most
√
d, since θ̂1

h = 0.

For the rest of this section, we will need to condition on the event that (52) holds across various s, a, h, k. Denote
E(S) where S is a set containing tuples of the form (s, a, h, k) to be the event that for each element of S, we
have that (52) holds. In addition, define the event Z = E(

⋂
h,k{sτh, aτh, h, k}

k−1
τ=1).

D Proof of Lemma 2

First, we bound the norm of wkh using our result from Lemma 1.

Lemma 6. For any k, h, the weight wkh in Algorithm 1 satisfies

‖wkh‖ ≤ (Mk + Vmax)
√
dk (53)

conditioned on the event E({sτh, aτh, h, k}
k−1
τ=1), where Mk =

√
d

(
rmax+2σ2

2
√
wk−1

·
√

log Tk(K−1)
δ + 2

)
.

Proof. For any vector v ∈ Rd,

|v>wkh| =
∣∣∣v>(Λkh)−1

k−1∑
τ=1

φ(sτh, a
τ
h)[〈φ(sτh, a

τ
h), θ̂kh〉+ max

a
Qkh+1(sτh+1, a)]

∣∣∣ (54)

≤
k−1∑
τ=1

|v>(Λkh)−1φ(sτh, a
τ
h)| · |〈φ(sτh, a

τ
h), θ̂kh〉+ max

a
Qkh+1(sτh+1, a)| (55)

By definition, maxaQ
k
h+1(sτh+1, a) ≤ Vmax. We now bound 〈φ(sτh, a

τ
h), θ̂kh〉 across all sτh, a

τ
h for τ = 1, . . . , k − 1

using Lemma 1. This requires the event E({sτh, aτh, h, k}
k−1
τ=1).

〈φ(sτh, a
τ
h), θ̂kh〉 ≤ 〈φ(sτh, a

τ
h), θh〉+

√
dφ(sτh, a

τ
h)T (Bkh)−1φ(sτh, a

τ
h) ·

(
rmax + 2σ2

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 1

)
(56)

≤ 1 +
√
d

(
rmax + 2σ2

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 1

)
≤
√
d

(
rmax + 2σ2

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 2

)
(57)

Manuscript under review by AISTATS 2021

We have used the fact that
√
φ(s, a)>(Bkh)−1φ(s, a) ≤ 1, since the minimum eigenvalue of Bkh is at least 1.

Denote Mk as this upper bound in (57). We use the Cauchy-Schwarz inequality to get

|v>wkh| ≤
k−1∑
τ=1

|v>(Λkh)−1φ(sτh, a
τ
h)| · (Mk + Vmax)

≤

√√√√(k−1∑
τ=1

v>(Λkh)−1v
)
·
(k−1∑
τ=1

φ(sτh, a
τ
h)>(Λkh)−1φ(sτh, a

τ
h)
)
· (Mk + Vmax) (58)

By Lemma D.1 of Jin et al. [2020b], this becomes

|v>wkh| ≤ (Mk + Vmax)
√
d ·

√√√√k−1∑
τ=1

v>(Λkh)−1v (59)

Note that Λkh − I � 0, which means that I−1 − (Λkh)−1 � 0, so

|v>wkh| ≤ (Mk + Vmax)
√
d ·

√√√√k−1∑
τ=1

v>v ≤ (Mk + Vmax)‖v‖
√
dk (60)

Since ‖wkh‖ = max‖v‖=1 v
>wkh, then the above expression implies that ‖wkh‖ ≤ (Mk + Vmax)

√
dk conditioned on

the event E({sτh, aτh, h, k}
k−1
τ=1).

Next, we present a concentration inequality used for the analysis of LSVI.

Lemma 7. If we let the event E be, for some fixed constant C,

∀(k, h) :
∥∥∥ k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− E

[
V kh+1(sτh+1)|sτh, aτh

]
]
∥∥∥

(Λkh)−1
≤ C · dVmax

√
χ (61)

where V kh (s) = maxaQ
k
h(s, a) and χ = log[cβrmaxdT/δ], then P(E|Z) ≥ 1− δ/2.

Proof. Applying Lemma D.4 of Jin et al. [2020b], note that V k is bounded and thus Vmax-subgaussian, so we get

∥∥∥ k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− E

[
V kh+1(sτh+1)|sτh, aτh

]
]
∥∥∥2

(Λkh)−1
≤ 4V 2

max

[d
2

log(k + 1) + log
2Nε
δ

]
+ 8k2ε2 (62)

with probability 1 − δ
2 , where Nε is the ε-covering number of V, the set of all V kh . By Lemma D.6 of Jin et al.

[2020b], Nε satisfies

logNε ≤ d log(1 + 4L/ε) + d2 log[1 + 8d1/2B2/ε2], (63)

where L is an upper bound on wkh, which holds for all wkh given the event Z and B is an upper bound on βk.
Using knowledge of pk and Vmax, we have the following values for L and B when conditioned on Z:

L = (Mk + Vmax)
√
dk =

(
√
d

(
rmax + 2σ2

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 2

)
+ Vmax

)
√
dk (64)

=

(
rmax + 2σ2

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 2 +

Vmax√
d

)
d
√
k (65)

B = cβd

√
log

dT

δ
·

(
(rmax + 2σ2)

√
d

ηk−1
+ Vmax

)
(66)

Manuscript under review by AISTATS 2021

We use these values and let ε = dVmax/k to get

log(1 + 4L/ε) = log

(
1 + 4

(
rmax + 2σ2

2Vmax
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 2 +

1√
d

)
k
√
k

)
(67)

We know there exists some constant C1 such that this expression can be bounded by C1 log (rmax+2σ2)T
δ , where

we use the fact that Vmax scales in H and the polynomial dependence on T inside the log only impacts C1. For
log(1 + 8d1/2B2/ε2), we use the fact that (a+ b)2 ≤ 2a2 + 2b2 to get

log(1 + 8
√
dB2/ε2) = log

(
1 + 16d5/2c2β log

(
dT

δ

)(
(rmax + 2σ2)2d

η2
k−1

+ V 2
max

)
· k2

d2V 2
max

)
(68)

≤ log

(
1 + 16

√
dc2β log

(
dT

δ

)(
(rmax + 2σ2)2d

η2
k−1V

2
max

+ 1

)
k2

)
(69)

There exists some different constant C2 such that this expression can be bounded by C2 log
cβ(rmax+2σ2)dT

δ .
Putting this all together,

∥∥∥ k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]
∥∥∥2

(Λkh)−1
(70)

≤4V 2
max

[d
2

log(k + 1) + log(2/δ) + d log(1 + 4L/ε) + d2 log(1 + 8
√
dB2/ε2)

]
+ 8d2V 2

max (71)

≤C2V 2
maxd

2 log

(
cβ(rmax + 2σ2)dT

δ

)
(72)

Taking the square root, we get our desired bound.

We are now ready to prove Lemma 2. Part of this proof is similar to Lemma B.4 of Jin et al. [2020b]), except

wkh is defined with θ̂kh and wπh uses θh, which results in an additional error term. By Lemma 3, we have that

〈φ(s, a), wkh〉 −Qπh(s, a) = 〈φ(s, a), wkh − wπh〉 (73)

We can write wkh − wπh as

wkh − wπh = (Λkh)−1
(k−1∑
τ=1

φ(sτh, a
τ
h)[〈φ(sτh, a

τ
h), θ̂kh〉+ V kh+1(sτh+1)]

)
− wπh (74)

= (Λkh)−1
(k−1∑
τ=1

φ(sτh, a
τ
h)[〈φ(sτh, a

τ
h), θ̂kh〉+ V kh+1(sτh+1)]− Λkhw

π
h

)
= (Λkh)−1

(k−1∑
τ=1

φ(sτh, a
τ
h)[〈φ(sτh, a

τ
h), θ̂kh〉+ V kh+1(sτh+1)− φ(sτh, a

τ
h)>wπh]

)
− (Λkh)−1wπh

The last line comes from the definition of Λkh = I +
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)>. Furthermore, recall that wπh

is defined as θh +
∫
V πh+1(s′)dµh(s′). Then φ(sτh, a

τ
h)>wπh = 〈φ(sτh, a

τ
h), θh〉 + 〈φ(sτh, a

τ
h),
∫
V πh+1(s′)dµh(s′)〉 =

Manuscript under review by AISTATS 2021

〈φ(sτh, a
τ
h), θh〉+ E

[
V πh+1(sτh+1)|sτh, aτh

]
. Plugging this back into (75), we have

wkh − wπh = (−(Λkh)−1wπh)︸ ︷︷ ︸
q1

+ (Λkh)−1
k−1∑
τ=1

φ(sτh, a
τ
h)
[
V kh+1(sτh+1)− E

[
V kh+1(sτh+1)|sτh, aτh

]]
︸ ︷︷ ︸

q2

+ (Λkh)−1
k−1∑
τ=1

φ(sτh, a
τ
h)E

[
V kh+1(sτh+1)− V πh+1(sτh+1)|sτh, aτh

]
︸ ︷︷ ︸

q3

+ (Λkh)−1
k−1∑
τ=1

φ(sτh, a
τ
h)〈φ(sτh, a

τ
h), θ̂kh − θh〉︸ ︷︷ ︸

q4

(75)

Note that q4 is an additional term that arises due to estimating the linear reward component. Substituting back
into (73), we have

〈φ(s, a), wkh〉 −Q
πk
h (s, a) = 〈φ(s, a), q1 + q2 + q3 + q4〉 (76)

We bound 〈φ(s, a), q1〉, 〈φ(s, a), q2〉, 〈φ(s, a), q3〉, and 〈φ(s, a), q4〉 separately.

• q1:

〈φ(s, a), q1〉 = 〈φ(s, a),−(Λkh)−1wπh〉 = 〈(Λkh)−1φ(s, a),−wπh〉 (77)

≤ ‖wπh‖
√
φ(s, a)>(Λkh)−1(Λkh)−1φ(s, a) (78)

≤ ‖wπh‖
√
φ(s, a)>(Λkh)−1φ(s, a) (79)

≤ 2Vmax
√
d ·
√
φ(s, a)>(Λkh)−1φ(s, a) (80)

In the second inequality, we’ve used the fact that (Λkh)−1 − (Λkh)−1(Λkh)−1 � 0 (this can be checked using
Weyl’s ineqality on I − (Λkh)−1). In the third inequality, we apply Lemma 4.

• q2: Since (Λkh)−1 is positive definite and symmetric, there exists a symmetric matrix (Λkh)−1/2 such that

〈φ(s, a), q2〉 = φ(s, a)>(Λkh)−1/2(Λkh)−1/2
k−1∑
τ=1

φ(sτh, a
τ
h)
[
V kh+1(sτh+1)− E

[
V kh+1(sτh+1)|sτh, aτh

]]
(81)

=
〈

(Λkh)−1/2φ(s, a), (Λkh)−1/2
k−1∑
τ=1

φ(sτh, a
τ
h)
[
V kh+1(sτh+1)− E

[
V kh+1(sτh+1)|sτh, aτh

]]〉
(82)

≤ ‖(Λkh)−1/2φ(s, a)‖ · ‖(Λkh)−1/2
k−1∑
τ=1

φ(sτh, a
τ
h)
[
V kh+1(sτh+1)− E

[
V kh+1(sτh+1)|sτh, aτh

]]
‖ (83)

≤ C · dVmax
√
χ ·
√
φ(s, a)>(Λkh)−1φ(s, a) (84)

We get the last line from Lemma 7, conditioned on E and Z.

• q3: We first write the expectation as an integral using the linear dynamics assumption:

〈φ(s, a), q3〉 =
〈
φ(s, a), (Λkh)−1

k−1∑
τ=1

φ(sτh, a
τ
h)E

[
V kh+1(sτh+1)− V πh+1(sτh+1)|sτh, aτh

] 〉
(85)

≤
〈
φ(s, a), (Λkh)−1

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>

∫
V kh+1(s′)− V πh+1(s′)dµh(s′)

〉
. (86)

Manuscript under review by AISTATS 2021

Note that (Λkh)−1
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)> = I − (Λkh)−1. Then the dot product is written as

〈
φ(s, a),

∫
V kh+1(s′)− V πh+1(s′)dµh(s′)

〉
−
〈
φ(s, a), (Λkh)−1

∫
V kh+1(s′)− V πh+1(s′)dµh(s′)

〉
(87)

By definition of expectation, the first dot product above is equal to
E
[
V kh+1(skh+1)− V πh+1(skh+1)|skh = s, akh = a

]
. Using Cauchy-Schwarz, the second one is less than√

φ(s, a)>(Λkh)−1φ(s, a) · ‖(Λkh)−1/2
∫
V kh+1(s′) − V πh+1(s′)dµh(s′)‖. Using the fact that ‖(Λkh)−1/2‖ ≤ 1,

‖µh(S)‖ ≤
√
d, and |V kh+1(s′)|, |V πh+1(s′)| ≤ Vmax, the second dot product in (87) is at most

2Vmax

√
d ·
√
φ(s, a)>(Λkh)−1φ(s, a). Putting this together, we get

〈φ(s, a), q3〉 ≤ E
[
V kh+1(skh+1)− V πh+1(skh+1)|skh = s, akh = a

]
+ 2Vmax

√
d ·
√
φ(s, a)>(Λkh)−1φ(s, a). (88)

• q4:

〈φ(s, a), q4〉 = 〈φ(s, a), (Λkh)−1
k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>(θ̂kh − θh) (89)

= 〈(Λkh)−1/2φ(s, a), (Λkh)−1/2
k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>(θ̂kh − θh)〉 (90)

≤ ‖(Λkh)−1/2φ(s, a)‖ · ‖(Λkh)−1/2
k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>(θ̂kh − θh)‖ (91)

≤
√
φ(s, a)>(Λkh)−1φ(s, a) ·

k−1∑
τ=1

‖(Λkh)−1/2φ(sτh, a
τ
h)‖ · φ(sτh, a

τ
h)>(θ̂kh − θh) (92)

≤
√
φ(s, a)>(Λkh)−1φ(s, a) ·

√√√√k−1∑
τ=1

φ(sτh, a
τ
h)>(Λkh)−1φ(sτh, a

τ
h) (93)

·

√√√√k−1∑
τ=1

(φ(sτh, a
τ
h)>(θ̂kh − θh))2 (94)

We can use Lemma D.1 of Jin et al. [2020b] to bound
√∑k−1

τ=1 φ(sτh, a
τ
h)>(Λkh)−1φ(sτh, a

τ
h) ≤

√
d. Next, we

bound
√∑k−1

τ=1(φ(sτh, a
τ
h)>(θ̂kh − θh))2 using Lemma 1, which requires the event E({sτh, aτh, h, k}

k−1
τ=1).

√√√√k−1∑
τ=1

(φ(sτh, a
τ
h)T (θ̂kh − θh))2 ≤

(
rmax + 2σ2

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 1

)
(95)

·

√√√√d

k−1∑
τ=1

φ(sτh, a
τ
h)>(Bkh)−1φ(sτh, a

τ
h) (96)

We can apply Lemma D.1 of Jin et al. [2020b] again, but since Bkh is a weighted covariance matrix, we have
that

k−1∑
τ=1

ητφ(sτh, a
τ
h)>(Bkh)−1φ(sτh, a

τ
h) ≤ d, (97)

Manuscript under review by AISTATS 2021

and hence √√√√k−1∑
τ=1

(φ(sτh, a
τ
h)>(θ̂kh − θh))2 ≤

(
rmax + 2σ2

2
√
ηk−1

·
√

log
Tk(K − 1)

δ
+ 1

)
· d
√
ηk−1

(98)

≤ Crd(rmax + 2σ)2

ηk−1

√
log

T

δ
(99)

for some constant Cr. Note that when k = 1, this term is equal to 0.

Putting everything together in (73), we get that there exists a constant c′ such that 〈φ(s, a), wkh〉−Qπh(s, a) is at
most

E
[
V kh+1(skh+1)− V πkh+1(skh+1)|skh = s, akh = a

]
+ d
√
χ

(
c′ · Vmax +

Cr(rmax + 2σ2)
√
d

ηk−1

)√
φ(s, a)T (Λkh)−1φ(s, a)

(100)

≤E
[
V kh+1(skh+1)− V πkh+1(skh+1)|skh = s, akh = a

]
+ cβd

√
ι

(
Vmax +

(rmax + 2σ2)
√
d

ηk−1

)√
φ(s, a)>(Λkh)−1φ(s, a)

(101)

where the term (rmax+2σ2)
√
d

ηk−1
is absent if k = 1. We know there exists some constant cβ that bounds

√
χ in terms

of
√
ι. Therefore, by setting βk = cβd

√
ι
(
Vmax + (rmax+2σ2)

√
d

ηk−1

)
when k > 1 and β1 = cβd

√
ιVmax, we get our

desired result. Note that the result is conditional on E∩Z, but the reward estimate bound doesn’t need to hold
for the s, a in the lemma statement.

E Proof of Theorem 1

Lemma 2 is used to show that Qkh is an upper confidence bound on Q?h and to bound the gap between Qkh and
Qπkh , which make up two intermediate lemmas used in the regret bound analysis.

Lemma 8. (UCB) For any s, a, h, k, conditioned on the event E ∩ Z we have that

Q?h(s, a) ≤ Qkh(s, a) (102)

Proof. We prove this by induction and use the result from Lemma 2 that∣∣∣〈φ(s, a), wkh〉 −Q?h(s, a)− E
[
V kh+1(skh+1)− V ?h+1(skh+1)|skh = s, akh = a

] ∣∣∣ ≤ βk√φ(s, a)>(Λkh)−1φ(s, a). (103)

Base case We showQ?H(s, a) ≤ QkH(s, a) conditioned on E∩Z. E
[
V kH+1(skh+1)− V ?H+1(skh+1)|skh = s, akh = a

]
= 0

since the value of a state at time H + 1 is 0, and thus (103) gives us

Q?H(s, a) ≤ 〈φ(s, a), wkH〉+ βk

√
φ(s, a)>(ΛkH)−1φ(s, a) (104)

We also know that Q?H(s, a) ≤ Vmax, so by definition of QkH we have Q?H(s, a) ≤ QkH(s, a).

Inductive hypothesis Suppose that Q?h+1(s, a) ≤ Qkh+1(s, a) conditioned on E ∩ Z.

Inductive step Applying the inductive hypothesis,

E
[
V kh+1(skh+1)− V ?h+1(skh+1)|skh = s, akh = a

]
≥ E

[
Qkh+1(skh+1, a

′)−Q?h+1(skh+1, a
′)|skh = s, akh = a

]
≥ 0 (105)

Manuscript under review by AISTATS 2021

where a′ = argmaxaQ
?
h+1(skh+1, a). Therefore, using (103) again, we get that

E
[
V kh+1(skh+1)− V ?h+1(skh+1)|skh = s, akh = a

]
+Q?h(s, a)− 〈φ(s, a), wkh〉 ≤ βk

√
φ(s, a)>(Λkh)−1φ(s, a) (106)

⇒ Q?h(s, a) ≤ 〈φ(s, a), wkh〉+ βk

√
φ(s, a)>(Λkh)−1φ(s, a) (107)

and therefore Q?h(s, a) ≤ Qkh(s, a). We complete this proof by induction.

We look at expected regret over the importance sampling done with pk. Recall that ākh is the greedy action
argmaxaQ

k
h(skh, a), and define ak?h = argmaxaQ

?
h(akh, a) as the optimal action. Expected regret is defined as

E [Regret(K)] = E

[
K∑
k=1

V ?1 (sk1)− V πk1 (sk1)

]
= E

[
K∑
k=1

Q?1(sk1 , a
k?
1)−Qπk1 (sk1 , a

k
1)

]
(108)

By Lemma 8, we know that Q?1(sk1 , a
k?
1) ≤ Qk1(sk1 , ã

k
1) conditioned on E ∩ Z for each k, to get that

E [Regret(K)] ≤ E

[
K∑
k=1

Qk1(sk1 , a
k?
1)−Qπk1 (sk1 , a

k
1)

]

≤
K∑
k=1

E
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1)
]
, (109)

where the second inequality follows by definition of ākh. Note that this expression is challenging because ākh and
akh are not the same. For each k, define the event Ek that akh = a0,h for at least one h ∈ [H]. We can condition
E
[
Qπk1 (sk1 , a

k
1)
]

based on following the trajectory of Ek or not:

K∑
k=1

E
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1)
]

=

K∑
k=1

(
E
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1)|ECk

]
Pr(ECk) + E

[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1)|Ek

]
Pr(Ek)

)

Under the event ECk , the agent selects the greedy action ākh for the entire episode k, and then the action taken at
each timestep is equal to the greedy action, making for easier comparison using Lemma ??. The probability of
ECk is (1− pk)H . On the other hand, under the event Ek there is at least one default action taken in episode k.
However, we know that Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , a

k
1) is trivially less than 2Vmax. The probability of Ek is 1−(1−pk)H ,

which is at most 1− (1−Hpk) = Hpk. Putting this back together, our regret bound is now

E [Regret(K)] ≤
K∑
k=1

(1− pk)HE
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , ā

k
1)|ECk

]
+ 2HVmax

K∑
k=1

pk (110)

We now focus on bounding the regret with each episode conditioned on ECk . We need the following intermediate
lemma.

Lemma 9. Define δkh = E
[
Qk?h (skh, ā

k
h)−Qπkh (skh, ā

k
h)|ECk

]
and ζkh+1 = E

[
δkh+1|skh, ākh

]
− δkh+1. Then conditioned

on the event E ∩ Z and ECk , for any h, k,

δkh ≤ ζkh+1 + δkh+1 + 2βkh

√
φ(skh, ā

k
h)>(Λkh)−1φ(skh, ā

k
h) (111)

Manuscript under review by AISTATS 2021

Proof. The policy πk conditioned on ECk can be redefined as a new policy, which we denote as π̄k—in this case,
this policy is equivalent to discarding the action-centering step completely. By Lemma ??, we have that

〈φ(s, a), wkh〉+ βk

√
φ(s, a)>(Λkh)−1φ(s, a)− βk

√
φ(s, a)>(Λkh)−1φ(s, a)−Qπ̄kh (s, a) (112)

≤ E
[
V kh+1(skh+1)− V π̄kh+1(skh+1)|skh = s, akh = a

]
+ βk

√
φ(s, a)>(Λkh)−1φ(s, a)

⇒ Qkh(s, a)−Qπ̄kh (s, a) ≤ E
[
V kh+1(skh+1)− V π̄kh+1(skh+1)|skh = s, akh = a

]
+ 2βk

√
φ(s, a)>(Λkh)−1φ(s, a)

If we let s = skh, a = ākh, this becomes:

δkh ≤ E
[
V kh+1(skh+1)− V π̄kh+1(skh+1)|skh, ākh

]
+ 2βk

√
φ(skh, ā

k
h)>(Λkh)−1φ(skh, ā

k
h) (113)

Note that E
[
δkh+1|skh, ākh

]
is equal to E

[
Qkh+1(skh+1, ā

k
h+1)−Qπ̄kh+1(skh+1, ā

k
h+1)|skh, ākh

]
(we implicitly condi-

tion on ECk by using π̄k). Since we are taking the greedy action under policy π̄k, this is equal to
E
[
V kh+1(skh+1)− V π̄kh+1(skh+1)|skh, ākh

]
. Therefore, we have that

δkh ≤ ζkh+1 + δkh+1 + 2βk

√
φ(skh, a

k
h)>(Λkh)−1φ(skh, a

k
h) (114)

By Lemma 9, conditioned on E ∩ Z and ECk ,

K∑
k=1

(1− pk)HE
[
Qk1(sk1 , ā

k
1)−Qπk1 (sk1 , ā

k
1)|ECk

]
≤

K∑
k=1

δk1

=

K∑
k=1

(
H∑
h=1

ζkh + 2

H∑
h=1

βk

√
φ(skh, ā

k
h)>(Λkh)−1φ(skh, ā

k
h)

)

=

K∑
k=1

H∑
h=1

ζkh︸ ︷︷ ︸
a1

+ 2

K∑
k=1

H∑
h=1

βk

√
φ(skh, ā

k
h)>(Λkh)−1φ(skh, ā

k
h)︸ ︷︷ ︸

a2

(115)

We bound a1 and a2 separately:

• a1: Note that {ζkh}h,k is a martingale difference sequence. Furthermore, |ζkh | ≤ 4Vmax since |δkh| ≤ 2Vmax.
Therefore the difference between the largest possible and smallest possible value of ζkh is ckh = 8Vmax, and
we apply the Azuma-Hoeffding inequality:

P (a1 ≥ ε) ≤ exp

(
− 2ε2∑

h,k 64V 2
max

)
(116)

= exp

(
− ε2

32V 2
maxT

)
(117)

This can be written as

a1 ≤
(

32V 2
maxT log(2/δ)

)1/2

w.p. 1− δ

2
(118)

Manuscript under review by AISTATS 2021

• a2: We use Cauchy-Schwarz to get

a2 ≤ 2

H∑
h=1

(K∑
k=1

β2
k

)1/2

·
(K∑
k=1

φ(skh, ā
k
h)>(Λkh)−1φ(skh, ā

k
h)
)1/2

≤ 2

H∑
h=1

(K∑
k=1

β2
k

)1/2√
2dι

≤ 2

H∑
h=1

(
c2βd

2ιV 2
max +

K∑
k=2

2c2βd
2ι(V 2

max +
(rmax + 2σ2)2d

p2
k−1(1− pk−1)2

)
)1/2√

2dι (119)

≤ 2

H∑
h=1

(
2Kc2βd

2ιV 2
max +

K∑
k=2

2c2βd
2ι

(rmax + 2σ2)2d

p2
k−1(1− pk−1)2

)1/2√
2dι (120)

≤ 2H
√

2dι · cβd
√
ι

√2V 2
maxK +

√√√√2(rmax + 2σ2)2d

K∑
k=2

1

p2
k−1(1− pk−1)2

 (121)

≤ 4Hcβιd
3/2

Vmax

√
K + (rmax + 2σ2)

√√√√ K∑
k=2

d

p2
k−1(1− pk−1)2

 (122)

Where the second inequality comes from Lemma D.2 of Jin et al. [2020b].

Putting this together using (110), our regret bound is now

E [Regret(K)] ≤
(

32V 2
maxT log(2/δ)

)1/2

+ 4Hcβιd
3/2

Vmax

√
K + (rmax + 2σ2)

√√√√ K∑
k=2

d

p2
k−1(1− pk−1)2

+ 2HVmax

K∑
k=1

pk (123)

This inequality illustrates a tradeoff depending on the value of pk. We thus must set a pk as to minimize the
order of T in the bound. Let pk be of the form 1

(k+1)q (since pk cannot be 0 or 1). Then note that

K∑
k=1

pk =

K∑
k=1

1

(k + 1)q
≤
∫ K+1

1

k−qdk =
1

1− q
k1−q

∣∣∣K+1

1
≤ 1

1− q
(K + 1)1−q (124)

And √√√√ K∑
k=2

1

p2
k−1(1− pk−1)2

=

√√√√K−1∑
k=1

1

p2
k(1− pk)2

≤

√√√√ 1

(1− 1
2q)2

K−1∑
k=1

1

p2
k

(125)

=

√√√√ 1

(1− 1
2q)2

K−1∑
k=1

(k + 1)2q (126)

≤
√

1

(1− 1
2q)2

K
2q+1

2 (127)

This justifies why we want q = 1
4 , since it satisfies 1− q = 2q+1

2 . Substituting this in along with Vmax = H gives
an overall regret bound of

E [Regret(K)] ≤
(

32H2T log(2/δ)
)1/2

+ 4Hcβιd
3/2
(
H
√
K + 7(rmax + 2σ2)K3/4

√
d
)

+
8

3
H2(K + 1)3/4 (128)

This is O((rmax + 2σ2)d2ιH3/2T 3/4).

Manuscript under review by AISTATS 2021

Figure 2: Average regret for ACVI (c = 0.0001), LSVI-M (c = 0.0006), and LSVI-UCB (c = 0.006) over 5
random seeds.

Probability of regret bound Note that the above regret bound is conditioned on the event E ∩ Z. This
probability is

Pr(E ∩ Z) = Pr(E|Z) Pr(Z) ≥
(

1− δ

2

)
Pr(Z) (129)

Next, Z consists of H
∑K−1
k=1 k = H

(
K
2

)
tuples. Lemma 1 holds for an individual (s, a, h, k) with probability at

least 1− δ
(T (K−1) . Then, using a union bound we get that Pr(Z) ≥ 1− δ

T (K−1) ·H
(
K
2

)
= 1− δ

2 . Therefore,

Pr(E ∩ Z) ≥
(

1− δ

2

)2

≥ 1− δ. (130)

F Additional Experimental Results

We discuss more details about our experimental setup and provide additional results. First, we describe our
approach to select a reasonable UCB constant c. Define c0 = ∆, and increment this by ∆ until Q?h(s, a) ≤ Qkh(s, a)
holds for all s, a, h, k. For ACVI and LSVI-M, we use ∆ = 0.0001, and for LSVI-UCB we use a larger increment
∆ = 0.001 since β for LSVI-UCB is smaller. Our choice of c using this approach is 0.0001, 0.0006, 0.006 for
ACVI, LSVI-M, and LSVI-UCB, respectively. We rerun our procedure in section 7 over 5 random seeds,
plotting the average and standard error in Figure 2 to verify that ACVI attains lower average regret than
LSVI-M and LSVI-UCB empirically.

F.1 Setting the sampling schedule pk

We examine the effect of changing pk on the average regret and empirically verify that pk ∼ 1
k1/4

outperforms
other rates for pk. We run ACVI with c = 0.0001 using our proposed pk, and compare against pk scaling with
k−1, k−1/2, k−1/8. Under our protocol for choosing the UCB constant, we select c = 0.0001 for the pk alternatives
as well. The average regret and standard error across the same 5 random seeds are plotted in Figure 3. We
see that having pk decrease at a faster rate leads to the average regret converging to a nonzero constant, which
matches our theoretical results that smaller pk leads to poorer estimates of θh. pk decreasing at a slower rate also
has a higher average regret, matching our theoretical results that frequently choosing the default action worsens
regret.

Manuscript under review by AISTATS 2021

Figure 3: Average regret for ACVI with sampling schedule pk ≈ k−1/4, k−1/2, k−1, k−1/8 over 5 random seeds,
c = 0.0001. The regret curve corresponding to ACVI (pk ≈ k−1/4) attains the lowest average regret.

F.2 Robustness to confounding reward structure

We examine the effect of changing fkh (·) on the average regret and verify that, if |fkh | is fixed, the performance of
ACVI is largely unaffected by further reward structure. In addition to the confounding reward defined in (13),
which we refer to as “oscillating”, we consider two simple fkh , “index” and “dot product”, scaled to the same
approximate magnitude as that of (13):

fkh,index(sk1) = 0.43 · sk1 [h] (131)

fkh,dot product(s
k
1) = 0.15z>h s

k
1 .

Recall that zh ∼ Unif(−1, 1)d
′

and sk1 [h] represents the hth-indexed element of sk1 . These confounding reward
components differ from the one defined in (13) because they no longer oscillate as a function of k. Since the
magnitude of these confounding reward components are the same, we use c = 0.0001 for these reward models.
The average regret and standard error across the same 5 random seeds are plotted in Figure 4. This empirically
confirms that the structure of the reward beyond the magnitude does not impact ACVI significantly.

Manuscript under review by AISTATS 2021

Figure 4: Average regret for ACVI, using the confounding rewards defined in (13) and (131) over 5 random
seeds, c = 0.0001. All three curves decrease at roughly the same rate.

	Introduction
	Related Work
	Problem Setting
	Episodic reinforcement learning
	Linear MDP with confounding rewards

	Equivalence in Optimality to Linear MDPs
	Action-Centered Value Iteration
	Estimating the linear reward component
	Our Algorithm

	Regret Analysis
	Proof Sketch
	Comparison to other approaches and bounds

	Experiments
	Discussion
	Glossary
	Assumptions and properties of the linear value function
	Proof of Lemma 1
	Setup for estimator
	Computing the reward bound

	Proof of Lemma 2
	Proof of Theorem 1
	Additional Experimental Results
	Setting the sampling schedule pk
	Robustness to confounding reward structure

