Shoring up the Foundations: Fusing Weak Supervision and Model Embeddings

Mayee F. Chen*, Daniel Y. Fu*, Dyah Adila, Michael Zhang, Fred Sala, Kayvon Fatahalian, Christopher Ré

August 2, 2022, UAI

Foundation Models (FMs)¹

+ Perform extremely well on variety of downstream tasks

Foundation Models (FMs)¹

E.g. GPT3, CLIP, PaLM

- + Perform extremely well on variety of downstream tasks
- Fixed interfaces, may require hand-labeled data to adapt to task

Motivation

Foundation Models (FMs)¹

E.g. GPT3, CLIP, PaLM

- + Perform extremely well on variety of downstream tasks
- Fixed interfaces, may require hand-labeled data to adapt to task

Weak Supervision (WS)

+

Unlabeled data

Crowdworkers, heuristics, external KBs

WS data labeling pipelines in Google, Youtube; startup Snorkel Al²

+ Produce labeled data using unlabeled data and noisier, weaker sources

Motivation

Foundation Models (FMs)¹

E.g. GPT3, CLIP, PaLM

- + Perform extremely well on variety of downstream tasks
- Fixed interfaces, may require hand-labeled data to adapt to task

Weak Supervision (WS)

Unlabeled data

Crowdworkers, heuristics, external KBs

WS data labeling pipelines in Google, Youtube; startup Snorkel Al²

- + Produce labeled data using unlabeled data and noisier, weaker sources
- Source quality can vary significantly across data

Q: How can we combine Foundation Models and Weak Supervision in settings where we lack hand-labeled data?

Q: How can we combine Foundation Models and Weak Supervision in settings where we lack hand-labeled data?

Our work: exploit smoothness of FM embeddings to address particular algorithmic challenges in Weak Supervision

Outline

- 1. Problem Setup
 - a. Simple baselines combining WS and FMs
- 2. Technical Overview of Weak Supervision
 - a. Background
 - b. 2 Challenges \rightarrow potential FM interface opportunities
- 3. Method (Liger): using FMs to solve WS challenges
- 4. Theory: Embedding Smoothness
- 5. Results

Problem Setup

Input:

- Unlabeled dataset $\mathcal{D}=\{x_i\}_{i=1}^n$ with unknown label $y\in\{-1,1\}$
- Weak sources' labeling functions (LFs) $\lambda_1, \ldots, \lambda_m: \mathcal{X} o \{-1, 0, 1\}$
 - Sources can *abstain* and output 0

Input:

- Unlabeled dataset $\mathcal{D}=\{x_i\}_{i=1}^n$ with unknown label $y\in\{-1,1\}$
- Weak sources' labeling functions (LFs) $\lambda_1, \ldots, \lambda_m : \mathcal{X} \to \{-1, 0, 1\}$
 - Sources can abstain and output 0

Input:

- Unlabeled dataset $\mathcal{D}=\{x_i\}_{i=1}^n$ with unknown label $y\in\{-1,1\}$
- Weak sources' labeling functions (LFs) $\lambda_1, \ldots, \lambda_m : \mathcal{X} \to \{-1, 0, 1\}$
 - Sources can abstain and output 0
- FM embedding mapping $f:\mathcal{X} o \mathbb{R}^d$
 - Model accessible via embeddings (e.g. OpenAl API), cannot access full model

Input:

- Unlabeled dataset $\mathcal{D}=\{x_i\}_{i=1}^n$ with unknown label $y\in\{-1,1\}$
- Weak sources' labeling functions (LFs) $\lambda_1, \ldots, \lambda_m : \mathcal{X} \to \{-1, 0, 1\}$
 - Sources can *abstain* and output 0
- FM embedding mapping $f:\mathcal{X} o \mathbb{R}^d$
 - Model accessible via embeddings (e.g. OpenAl API), cannot access full model

Desired output: $\Pr_f(y=1|\lambda_1,\ldots,\lambda_m,x)$

• Given a datapoint, a list of votes on its label, and its embedding, what is its true label?

Use weak supervision and FM embeddings sequentially?

Unlabeled dataset

 $\{x_i\}_{i=1}^n$

Weak sources $\lambda_1,\ldots,\lambda_m$

Use weak supervision and FM embeddings sequentially?

Use weak supervision and FM embeddings sequentially?

Adapters (linear probes, MLPs)

Use weak supervision and FM embeddings sequentially?

Can we do better than sequential application?

Use weak supervision and FM embeddings sequentially?

Can we do better than sequential application?

Deeper Dive into Weak Supervision

Standard WS Algorithm

1. Learn relationship between y and $\lambda_1, \ldots, \lambda_m$ via graphical model

Standard WS Algorithm

1. Learn relationship between y and $\lambda_1, \ldots, \lambda_m$ via graphical model

- Learn accuracy parameters $heta_i \equiv \mathbb{E}[\lambda_i y]$
- Under the hood: algorithms for *latent variable estimation*^{1,2} compute how often LFs agree on their votes (covariance matrix) or via maximum likelihood estimation³

Fu et. al. Fast and three-rious: Speeding up weak supervision with triplet methods. ICML 2020.
 Ratner et. al. Training Complex Models with Multi-Task Weak Supervision. AAAI 2019.
 Ratner et. al. Data Programming: Creating Large Training Sets, Quickly. NeurIPS 2016.

Standard WS Algorithm

2. Inference

- Given *x*, output estimate of $\Pr_{\theta}(y=1|\lambda_1,\ldots,\lambda_m)$
- Under the hood: Bayes rule, weighing each λ_i by a function of θ_i

Coarse-grained accuracies

 $\Pr_{ heta}(y=1|\lambda_1,\ldots,\lambda_m)$ is independent of x

Coarse-grained accuracies

 $\Pr_{\theta}(y=1|\lambda_1,\ldots,\lambda_m)$ is independent of x x₂: not spam x₁: spam love the way you lie featuring "Im 17, Rapper/Singer from Estonia. rhianna, hes an awesome rapper!!! Please listen my new cover." shes an awesome singer!!! def L_2: SPAM if "rapper" $\lambda_2(x_1) = \lambda_2(x_2)$ Model output is the same for both points, ignoring other

contextual information in the comments

24

Coarse-grained accuracies

Low coverage

When $\lambda_i = 0$ on x, the algorithm discards that LF because it is uninformative.

• Outputs $\Pr_{\theta}(y=1|\lambda_i,\ldots,\lambda_{i-1},\lambda_{i+1},\lambda_m)$ on x

Low coverage

When $\lambda_i = 0$ on x, the algorithm discards that LF because it is uninformative.

• Outputs $\Pr_{ heta}(y=1|\lambda_i,\ldots,\lambda_{i-1},\lambda_{i+1},\lambda_m)$ on x

Low coverage

When $\lambda_i = 0$ on x, the algorithm discards that LF because it is uninformative.

• Outputs $\Pr_{\theta}(y=1|\lambda_i,\ldots,\lambda_{i-1},\lambda_{i+1},\lambda_m)$ on x

Low coverage

When $\lambda_i = 0$ on x, the algorithm discards that LF because it is uninformative.

• Outputs $\Pr_{\theta}(y=1|\lambda_i,\ldots,\lambda_{i-1},\lambda_{i+1},\lambda_m)$ on x

Low coverage

When $\lambda_i = 0$ on x, the algorithm discards that LF because it is uninformative.

• Outputs $\Pr_{ heta}(y=1|\lambda_i,\ldots,\lambda_{i-1},\lambda_{i+1},\lambda_m)$ on x

low *coverage* of LFs = some points lack signal, bad WS output

No "check out", "love" or "rapper" in this comment

Method

1. For coarse-grained accuracies, **partition** the FM embedding space and estimate a set of parameters per part \rightarrow finer grained accuracies, better estimate of $\Pr_{\theta}(y = 1 | \lambda_1, \dots, \lambda_m, x)$

1. For coarse-grained accuracies, **partition** the FM embedding space and estimate a set of parameters per part \rightarrow finer grained accuracies, better estimate of $\Pr_{\theta}(y = 1 | \lambda_1, \dots, \lambda_m, x)$

Embedded dataset $\{f(x_i)\}_{i=1}^n$

1. For coarse-grained accuracies, **partition** the FM embedding space and estimate a set of parameters per part \rightarrow finer grained accuracies, better estimate of $\Pr_{\theta}(y = 1 | \lambda_1, \dots, \lambda_m, x)$

Embedded dataset $\{f(x_i)\}_{i=1}^n$

1. For coarse-grained accuracies, **partition** the FM embedding space and estimate a set of parameters per part \rightarrow finer grained accuracies, better estimate of $\Pr_{\theta}(y = 1 | \lambda_1, \dots, \lambda_m, x)$

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

Embedded dataset $\{f(x_i)\}_{i=1}^n$

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

Embedded dataset $\{f(x_i)\}_{i=1}^n$

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

Embedded dataset $\{f(x_i)\}_{i=1}^n$

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

43

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

Embedded dataset
$$\{f(x_i)\}_{i=1}^n$$

 $\lambda_1 o ar{\lambda}_1$
 $\lambda_2 o ar{\lambda}_2$
 $\lambda_3 o ar{\lambda}_3$

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

Embedded dataset
$$\{f(x_i)\}_{i=1}^n$$

 $\lambda_1 \rightarrow \bar{\lambda}_1$
 $\lambda_2 \rightarrow \bar{\lambda}_2$
 $\lambda_3 \rightarrow \bar{\lambda}_3$
Has more LF signal now!

2. For low coverage, **extend** votes of LFs to points that are close by in FM embedding space to construct $\bar{\lambda}_1, \ldots \bar{\lambda}_m \rightarrow$ fewer abstains

Embedded dataset $\{f(x_i)\}_{i=1}^n$

Altogether: estimate $\Pr(y = 1 | \bar{\lambda}_1, \dots, \bar{\lambda}_m, x)$ using partitioned dataset based off of *f*

$$\lambda_1 \rightarrow \bar{\lambda}_1$$

$$\lambda_2 \rightarrow \bar{\lambda}_2$$

$$\lambda_3 \rightarrow \bar{\lambda}_3$$
Has more LF signal now

Why does this work?

Theory: why does this work?

Liger works because of the local *smoothness* of labels in the FM embedding space.

Theory: why does this work?

Liger works because of the local *smoothness* of labels in the FM embedding space.

Smoothness (informal): how unlikely the label changes as you move further away from a point

• E.g.,
$$\Pr(y = 1|x) - \Pr(y = 1|x') \le K \|f(x) - f(x')\|$$

Theory: why does this work?

Liger works because of the local *smoothness* of labels in the FM embedding space.

Smoothness (informal): how unlikely the label changes as you move further away from a point

• E.g.,
$$\Pr(y=1|x) - \Pr(y=1|x') \le K \|f(x) - f(x')\|$$

Smoothness allows for:

- Good approximation of Pr(|x) when partitioning
- Extended labeling functions to be accurate nearby

Theory: tradeoffs

- \bigwedge Partitioning into too many sets = good local estimates, high variance
- Extending too far in embedding space = LF votes become incorrect because true label changes value
- Need to control these depending on how smooth FM is!

Theory: tradeoffs

- A Partitioning into too many sets = good local estimates, high variance
- Extending too far in embedding space = LF votes become incorrect because true label changes value
- Need to control these depending on how smooth FM is!

Theoretical results (informal)

Theorem 1: generalization error of Liger has a bias-variance decomposition dependent on size/number of partitions and a smoothness constant.

• Tradeoff: more partitioning = lower bias, higher variance

Theoretical results (informal)

Theorem 1: generalization error of Liger has a bias-variance decomposition dependent on size/number of partitions and a smoothness constant.

• Tradeoff: more partitioning = lower bias, higher variance

Theorem 2: extending labeling functions further reduces generalization error if $\bar{\lambda}$'s accuracy is better than random. This can be achieved depending on λ 's accuracy, FM smoothness, and how much we extend.

• Tradeoff: more extending = more coverage, worse accuracy

Empirical Results

Validation

- 1. No hand-labeled data: compare against a) WS (no FMs), b) sequential WS+FM baselines
- 2. [In paper] some labeled data: can we combine LIGER with labeled data?
- 3. Is embedding smoothness correlated with performance?

Empirical Results (no hand-labeled data)

Weak Supervision Datasets + GPT-3 embeddings (NLP), CLIP embeddings (video)

			Weak Sources Only				
	Task	WS-kNN	WS-Adapter	WS-LM	LIGER	Δ Coverage	
NLP	Spam	72.8	92.3	83.6	95.0	+45.5	
	Weather	62.0	86.0	78.0	98.0	+90.2	
	Spouse	16.9	17.1	47.0	52.2	+12.1	
Video	Basketball	33.3	48.9	27.9	69.6	+8.3	
	Commercial	84.7	92.8	88.4	93.5	+18.8	
	Tennis	83.0	83.8	82.0	83.3	+32.5	

Without additional hand-labeled data, Liger improves LF coverage and outperforms standard WS and sequential baselines

Empirical Results (no hand-labeled data)

Weak Supervision Datasets + GPT-3 embeddings (NLP), CLIP embeddings (video)

Task	Standard WS	WS + kNN	WS + Adapter	Liger	ΔCoverage
Spam	83.6	72.8	<u>92.3</u>	95.0	+45.5
Weather	78.0	62.0	<u>86.0</u>	98.0	+90.2
Spouse	<u>47.0</u>	16.9	17.1	52.2	+12.1
Basketball	27.9	33.3	<u>48.9</u>	69.6	+8.3
Commercial	88.4	84.7	<u>92.8</u>	93.5	+18.8
Tennis	82.0	83.0	83.8	<u>83.3</u>	+32.5

Without additional hand-labeled data or end model training, Liger improves LF coverage and outperforms standard WS and sequential baselines

Empirical Results (some labeled data)

What if we have a little bit of labeled data available?

Liger-adapter: use Liger model outputs + labeled data as input to adapter

Task	kNN	Adapter	Liger-Adapter
Spam	91.2	94.4	95.4
Weather	92.0	90.0	96.8
Spouse	21.6	15.7	49.6
Basketball	64.4	79.3	79.5
Commercial	92.0	93.0	93.2
Tennis	73.2	83.1	84.0

Liger-adapter allows for our method to incorporate labeled data and outperforms baselines that do not utilize unlabeled data

A closer look at smoothness

Embedding	F1-score
Raw pixel	19.3
RN-101	31.1
BiT-M	42.5
CLIP	69.6

+ Explore smoothness of prompting methods for text

Matches theory that more smooth FM embeddings = better performance

Summary

- Liger applies foundation models to weak supervision settings, which lack hand-labeled data, with two simple steps that exploit FM *smoothness*
 - **Partition in FM embedding space:** Estimate finer-grained accuracy parameters
 - Extend in FM embedding space: Improve coverage of labeling functions
- Improves over standard WS and simple baselines based on FM smoothness

Summary

- Liger applies foundation models to weak supervision settings, which lack hand-labeled data, with two simple steps that exploit FM *smoothness*
 - **Partition in FM embedding space:** Estimate finer-grained accuracy parameters
 - **Extend in FM embedding space:** Improve coverage of labeling functions
- Improves over standard WS and simple baselines based on FM smoothness

Takeaway: Liger shows that the application of foundation model interfaces can be algorithm-aware and principled (e.g. via smoothness property)

• But there may be many more interesting ways to combine FMs and weak supervision principles!

Contact: mfchen@stanford.edu, danfu@cs.stanford.edu

Arxiv: https://arxiv.org/abs/2203.13270

Code: <u>https://github.com/HazyResearch/liger</u>

Mayee F. Chen*, Daniel Y. Fu*, Dyah Adila, Michael Zhang, Fred Sala, Kayvon Fatahalian, Christopher Ré. Shoring Up the Foundations: Fusing Model Embeddings and Weak Supervision. UAI 2022.

Thm 1 (informal). Suppose we partition data into *s* sets, and *d* is the average diameter of a set in embedding space. *K* is a smoothness constant (lower K = more smooth). Then, Liger's error (no extensions) is:

$$Error \leq K \cdot d + \mathcal{O}igg(rac{ms}{n}igg) + H(y|\lambda_1, \dots \lambda_m, x)$$
Bias Variance Irreducible Error (conditional entropy)

- Bias-variance tradeoff in size/number of partitions, depending on smoothness
- Irreducible error: amount of randomness in *y* after observing *x* and LF votes

Next, what does extending and using $ar{\lambda}$ do?

- Decreases variance (more coverage = more points to estimate on)
- Irreducible error: $H(y|\lambda,x)
 ightarrow H(y|ar{\lambda},x)$ unclear!

Next, what does extending and using $ar{\lambda}$ do?

- Decreases variance (more coverage = more points to estimate on)
- Irreducible error: $H(y|\lambda,x)
 ightarrow H(y|ar{\lambda},x)$ unclear!

Thm 2 (informal): $H(y|\bar{\lambda}, x) < H(y|\lambda, x)$ as long as $\bar{\lambda}$ has better-than-random accuracy. This can be achieved depending on λ 's accuracy, FM smoothness, and how much we extend.

Next, what does extending and using $ar{\lambda}$ do?

- Decreases variance (more coverage = more points to estimate on)
- Irreducible error: $H(y|\lambda,x)
 ightarrow H(y|ar{\lambda},x)$ unclear!

Thm 2 (informal): $H(y|\bar{\lambda}, x) < H(y|\lambda, x)$ as long as $\bar{\lambda}$ has better-than-random accuracy. This can be achieved depending on λ 's accuracy, FM smoothness, and how much we extend.

• Tradeoff: extending too much = worse accuracy, higher coverage

Empirical Results (some labeled data)

What if we have a little bit of labeled data available?

Liger-adapter: use Liger model outputs + labeled data as input to adapter

		Dev Labels Available			
	Task	kNN	Adapter	LIGER-Adapter	
LP	Spam	91.2	94.4	95.4	
	Weather	92.0	90.0	96.8	
Z	Spouse	21.6	15.7	49.6	
Video	Basketball	64.4	79.3	79.5	
	Commercial	92.0	93.0	93.2	
	Tennis	73.2	83.1	84.0	
				and and a part	

Liger-adapter allows for our method to incorporate labeled data and outperforms baselines that do not utilize unlabeled data

A closer look at smoothness

What's the best way to embed sentences?

Prompting	F1-score
No Prompt Prompt Beginning	48.5 50.2
Prompt End	52.2

Matches theory that more smooth FM embeddings = better performance