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Q: How do we evaluate model performance during deployment?

e Model's deployment setting # training setting
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Source data distribution (z,y) ~ Ps
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Distribution shift

- Target data distribution (z,%) ~ P

Unlabeled

Mandoline: user-guided framework for evaluation under distribution shift
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Common approach: importance weighting

Source data distribution P, Target data distribution P,
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Problems: Density ratio to estimate

e Support shift - what if ps () = 0, ps(z) # 07?

e High dimensional data z € R%: harder to compute 22

ps ()
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Results

Prop 1: if k slices g = {g1, - - -, gk } capture all “relevant” distributional shift

between P, and P;, then reweighting with i tig;; recovers E; [£(y, fo(x))].

e If support shift occurs on irrelevant slices (i.e. slices independent of Y), it
can be corrected!
e Dimensionality: reduce from d — k
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between P, and P;, then reweighting with i tig; recovers E; [£(y, fo(x))].

e If support shift occurs on irrelevant slices (i.e. slices independent of Y), it
can be corrected!
e Dimensionality: reduce from d — k

e How to compute ﬁtiiigi’? Use any density ratio estimation method on g(x)

o Kullback-Leibler Importance Estimation Procedure (KLIEP)
m Extend to correct for noisily-defined, incomplete slices
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AVERAGE ESTIMATION ERROR (%)

METHOD CELEBA
RESNETI 8 | RESNETS50

SOURCE | 1.96% | 1.74%

CBIW 0.47% 0.53%

KMM 1.97% 1.76%

ULSIF 1.97% 1.76% i
MANDOLINE 0.16% 0.16% T

CelebA

. STANDARD ACCURACY

AVG. ERROR | MAX. ERROR
SOURCE | 6.2% + 3.8% | 15.6%
Importance CBIW 5.5% + 4.5% 17.9%
weighting on x KMM 5.7% + 3.6% 14.6%
~ ULSIF 6.4% £+ 3.9% 16.0%
On g(x) 1 MANDOLINE | 3.6% + 1.6% 5.9%

SNLI — MNLI



Summary

Model evaluation under distribution shift:

e \When user-specified slices capture relevant distribution shift, can reweight
using them

e Can mitigate 1) support shift and 2) high dimensionality in standard
importance reweighting

e Future steps: slice design - frameworks for how to construct good g?
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Thank you!
Contact: mfchen@stanford.edu
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