Mandoline: Model Evaluation under Distribution Shift

Mayee Chen*, Karan Goel*, Nimit Sohoni*, Fait Poms, Kayvon Fatahalian, Christopher Ré

Stanford University

Motivation

Q: How do we **evaluate** model performance during deployment?

• Model's deployment setting \neq training setting

Motivation

Q: How do we evaluate model performance during deployment?

• Model's deployment setting \neq training setting

Motivation

Q: How do we evaluate model performance during deployment?

• Model's deployment setting \neq training setting

Mandoline: user-guided framework for evaluation under distribution shift

Common approach: importance weighting

Common approach: importance weighting

Common approach: importance weighting

- Support shift what if $p_s(x) = 0, p_t(x) \neq 0$?
- High dimensional data $x \in \mathbb{R}^d$: harder to compute $\frac{p_t(x)}{p_s(x)}$

Slice: user-defined grouping of data $g(x) \in \{-1, 1\}$

Slice: user-defined grouping of data $g(x) \in \{-1, 1\}$

Slice: user-defined grouping of data $g(x) \in \{-1, 1\}$

Source Accuracy: 91%

Slice: user-defined grouping of data $g(x) \in \{-1, 1\}$

Source Accuracy: 91%

Slice: user-defined grouping of data $g(x) \in \{-1, 1\}$

Prop 1: if *k* slices $g = \{g_1, \ldots, g_k\}$ capture all "relevant" distributional shift between \mathcal{P}_s and \mathcal{P}_t , then reweighting with $\frac{p_t(g(x))}{p_s(g(x))}$ recovers $\mathbb{E}_t[\ell(y, f_{\theta}(x))]$.

- If support shift occurs on irrelevant slices (i.e. slices independent of Y), it can be corrected!
- Dimensionality: reduce from $d \rightarrow k$

Prop 1: if *k* slices $g = \{g_1, \ldots, g_k\}$ capture all "relevant" distributional shift between \mathcal{P}_s and \mathcal{P}_t , then reweighting with $\frac{p_t(g(x))}{p_s(g(x))}$ recovers $\mathbb{E}_t[\ell(y, f_{\theta}(x))]$.

- If support shift occurs on irrelevant slices (i.e. slices independent of Y), it can be corrected!
- Dimensionality: reduce from $d \rightarrow k$
- How to compute $\frac{p_t(g(x))}{p_s(g(x))}$? Use any density ratio estimation method on g(x)
 - Kullback-Leibler Importance Estimation Procedure (KLIEP)
 - Extend to correct for noisily-defined, incomplete slices

Task	Task Labels	Distribution Shift	Slices	
CELEBA image classification	male vs. female	↑ blurry images	METADATA LABELS blurry / not blurry	
SNLI→MNLI natural language inference	entailment, neutral or contradiction	single-genre \rightarrow multi-genre examples	PROGRAMMATIC task model predictions, task model entropy	

Task	Task Labels	Distribution Shift	Slices	
CELEBA image classification SNLI→MNLI natural language inference	male vs. female	↑ blurry images	METADATA LABELS blurry / not blurry	
	entailment, neutral or contradiction	single-genre \rightarrow multi-genre examples	PROGRAMMATIC task model predictions, task model entropy	

Method	CelebA			Method	STANDARD ACCURACY	
	RESNET18	RESNET50		METHOD	AVG. ERROR	MAX. ERROR
SOURCE	1.96%	1.74%		SOURCE	$6.2\% \pm 3.8\%$	15.6%
CBIW	0.47%	0.53%	Importance weighting on x	CBIW	$5.5\% \pm 4.5\%$	17.9%
KMM	1.97%	1.76%		KMM	$5.7\% \pm 3.6\%$	14.6%
ULSIF	1.97%	1.76%		ULSIF	$6.4\% \pm 3.9\%$	16.0%
MANDOLINE	0.16%	0.16%	⊥ On g(x) ⊥	MANDOLINE	$\mathbf{3.6\%} \pm \mathbf{1.6\%}$	5.9%
	Celet	A				1

 $SNLI \rightarrow MNLI$

Summary

Model evaluation under distribution shift:

- When user-specified slices capture relevant distribution shift, can reweight using them
- Can mitigate 1) support shift and 2) high dimensionality in standard importance reweighting
- Future steps: slice design frameworks for how to construct good *g*?

Thank you! Contact: <u>mfchen@stanford.edu</u>