The value of labeled vs unlabeled data in latent variable graphical models

Mayee Chen, Ben Cohen-Wang, Steve Mussmann, Fred Sala, Chris Ré

The tradeoff between labeled and unlabeled data

Our results:

A theoretical decision framework based on comparing generalization error of $f_{\theta}(\vec{\lambda})$ to understand the tradeoffs between using labeled or unlabeled data.

When model assumptions are incorrect, labeled data tends to be better → present a general way
of correcting model misspecification to improve unlabeled data performance

Theoretical decision framework

Labeled data is generally better to use when model misspecification is unaddressed.

Hope: fix model misspecification \rightarrow can unlabeled data be better to use?

Correcting misspecification in unlabeled case: medians estimate

- When enough unlabeled data, removes O(d/m) asymptotic bias \rightarrow unlabeled data more "valuable" now
- This is true for general method of moments estimators!

*Adding a little labeled data can further close the performance gap compared to a large labeled dataset

Application: Weak Supervision (40K points)	F1 score
Labeled	71.79
Unlabeled	64.81
Corrected unlabeled	68.12
Corrected unlabeled + 1% extra labeled points*	71.04

Future Work

More general frameworks for choosing between different sources of supervision

Labeled data + unlabeled data + observable sources	vs Labeled data + unlabeled data + metric space	vs Labeled data + knowledge of class-preserving transformations
This project (latent variable graphical models)	Label propagation (semi-supervised learning)	Data augmentation

Theoretical guidance for practitioners building models by quantifying tradeoffs between number of samples and how much information sources provide - and how this changes when model assumptions are wrong.