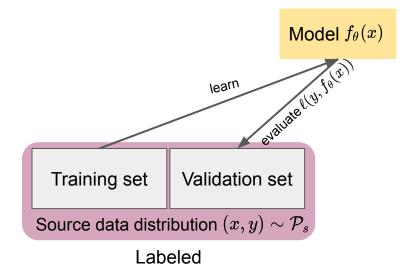
# Mandoline: Model Evaluation under Distribution Shift

Mayee Chen\*, Karan Goel\*, Nimit Sohoni\*, Fait Poms, Kayvon Fatahalian, Christopher Ré

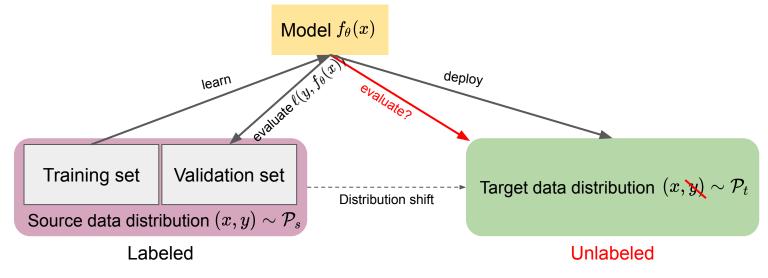
# Motivation


Q: How do we **evaluate** model performance during deployment?

• Model's deployment setting  $\neq$  training setting

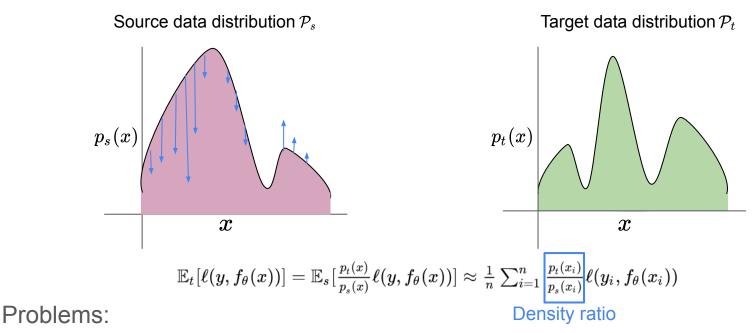
# Motivation

Q: How do we evaluate model performance during deployment?


• Model's deployment setting  $\neq$  training setting



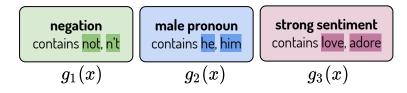
# Motivation


Q: How do we evaluate model performance during deployment?

• Model's deployment setting  $\neq$  training setting



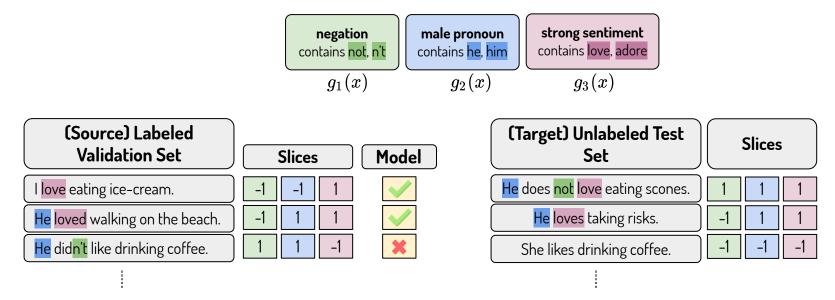
Mandoline: user-guided framework for evaluation under distribution shift


# Common approach: importance weighting



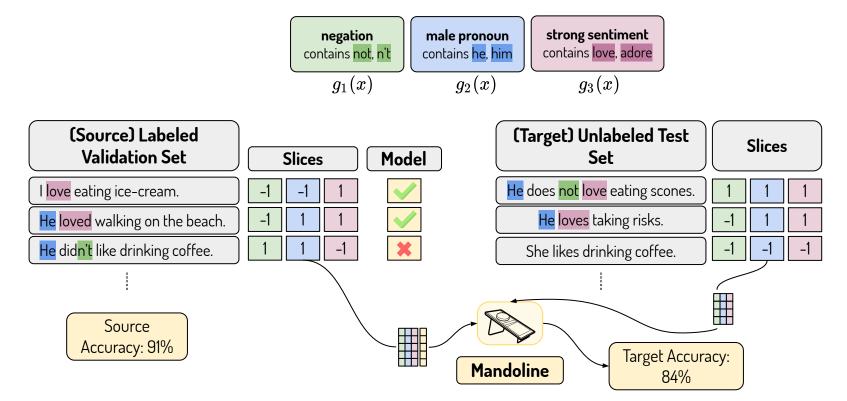
- Support shift what if  $p_s(x) = 0, p_t(x) 
  eq 0$  ?
- High dimensional data  $x \in \mathbb{R}^d$ : harder to compute  $\frac{p_t(x)}{p_s(x)}$

# Mandoline: Slice-based reweighting framework


*Slice*: user-defined grouping of data  $g(x) \in \{-1, 1\}$ 



# Mandoline: Slice-based reweighting framework


**Slice**: user-defined grouping of data  $g(x) \in \{-1, 1\}$ 

Source Accuracy: 91%



## Mandoline: Slice-based reweighting framework

**Slice**: user-defined grouping of data  $g(x) \in \{-1, 1\}$ 



#### Results

**Prop 1:** if the slices  $g = \{g_1, \ldots, g_k\}$  capture all "relevant" distributional shift between  $\mathcal{P}_s$  and  $\mathcal{P}_t$ , then reweighting with  $\frac{p_t(g(x))}{p_s(g(x))}$  recovers  $\mathbb{E}_t[\ell(y, f_\theta(x))]$ .

- If support shift occurs on irrelevant slices (i.e. slices independent of Y), it can be corrected!
- Dimensionality: reduce from  $d \rightarrow k$
- How to compute  $\frac{p_t(g(x))}{p_s(g(x))}$ ? Use any density ratio estimation method on g(x)
  - Kullback-Leibler Importance Estimation Procedure (KLIEP)
    - Can modify to correct for noisily defined slices

#### Results

| Task                                       | Task Labels                             | Distribution Shift                                 | Slices                                                       |
|--------------------------------------------|-----------------------------------------|----------------------------------------------------|--------------------------------------------------------------|
| CELEBA<br>image classification             | male<br>vs. female                      | ↑ blurry images                                    | METADATA LABELS<br>blurry / not blurry                       |
| SNLI→MNLI<br>natural language<br>inference | entailment, neutral<br>or contradiction | single-genre $\rightarrow$<br>multi-genre examples | PROGRAMMATIC<br>task model predictions<br>task model entropy |

| AVERAGE | ESTIMATION | Error | (%) |
|---------|------------|-------|-----|
|---------|------------|-------|-----|

| Method                             | CELEBA<br>ResNet18   ResNet50            |                                            |                                         | Method                             | STANDARD ACCURACY<br>Avg. Error   Max. Error                               |                                        |
|------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------|----------------------------------------|
| Source<br>CBIW<br>KMM<br>Mandoline | 1.96%<br>0.54%<br>1.78%<br><b>0.14</b> % | 1.74%<br>0.52%<br>1.67%<br><b>0.10</b> % ⊥ | Importance<br>weighting on x<br>On g(x) | SOURCE<br>CBIW<br>KMM<br>MANDOLINE | $6.2\% \pm 3.8\% \\ 5.5\% \pm 4.5\% \\ 5.7\% \pm 3.6\% \\ 3.6\% \pm 1.6\%$ | 15.6%<br>17.9%<br>14.6%<br>${f 5.9\%}$ |

 $\mathsf{SNLI} \to \mathsf{MNLI}$ 

# **Future directions**

Slice design

- Mandoline relies on sufficient *g* to capture all axes along which the distribution shift occurs
- How to construct *g*?
  - Users write them using domain knowledge
  - Metadata
  - Model-based (threshold based on entropy)
  - Algorithmically (subset selection, check independence)

A new way of thinking about evaluation under distribution shift: from improving methods to developing *better slices* 

Contact: mfchen@stanford.edu