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● High dimensional data          : harder to compute 

Common approach: importance weighting

Problems:

● Support shift - what if                                  ? 
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Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data 
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Results

● How to compute          ? Use any density ratio estimation method on g(x)
○ Kullback-Leibler Importance Estimation Procedure (KLIEP)

■ Can modify to correct for noisily defined slices

Prop 1: if the slices                            capture all “relevant” distributional shift 

between       and      , then reweighting with              recovers                        .                      

● If support shift occurs on irrelevant slices (i.e. slices independent of Y), it 
can be corrected!

● Dimensionality: reduce from d → k



Results
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Future directions

Slice design

● Mandoline relies on sufficient g to capture all axes along which the distribution 
shift occurs

● How to construct g?
○ Users write them using domain knowledge 
○ Metadata
○ Model-based (threshold based on entropy)
○ Algorithmically (subset selection, check independence) 

A new way of thinking about evaluation under distribution shift: from improving 
methods to developing better slices

Contact: mfchen@stanford.edu 
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