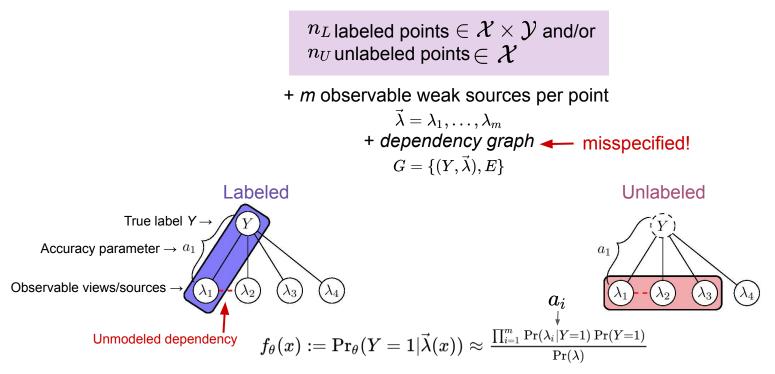

Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments Latent Variable Estimation

Mayee Chen*, Ben Cohen-Wang*, Steve Mussmann, Fred Sala, Chris Ré

Problem Setup

Training data:



<u>Q</u>: What are the tradeoffs of using labeled vs unlabeled data?

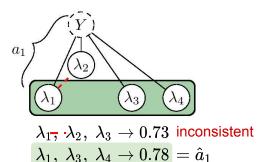
Our approach: theoretically analyze error of latent variable graphical model with labeled vs unlabeled input.

• Focus on the impact of **model misspecification** and how to reduce its effects in method-of-moments estimation.

Model

Labeled: directly estimate a_i

Unlabeled: use method-of-moments (Fu et. al., 2020) - relies on conditional independence of triples of sources Model misspecification: *d* unmodeled dependencies among *m* sources


Results

1. Error Decomposition for $f_{ heta}(x)$

 \mathcal{L}_{CE} = Irreducible error + other sampling noise + inference bias + parameter estimation error

For labeled data: goes to 0 For unlabeled data: $\mathcal{O}(d/m)$ asymptotic bias!

2. Correcting misspecification for unlabeled data:

- $\lambda_{17}, \lambda_{2}, \lambda_{3} \rightarrow 0.73$ inconsistent $\lambda_{1}, \lambda_{3}, \lambda_{4} \rightarrow 0.78 = \hat{a}_{1}$ Select median $\lambda_{17}, \lambda_{2}, \lambda_{4} \rightarrow 0.81$ inconsistent
- Median correction yields consistent estimates of a_i : **Removes** O(d/m)asymptotic bias and

improves value of unlabeled data.

True for other method of moments estimators (Chaganty and Liang, 2014; Anandkumar et. al., 2012)

Thank you!

Check out our paper for more details on:

- Theoretical framework for choosing between and combining labeled and unlabeled data
- Empirical results from application to weak supervision:
 - Verify our error decomposition and median correction approach
 - A little bit of labeled data (1%) combined with unlabeled data gives us performance close to a fully labeled dataset!

Paper: https://arxiv.org/abs/2103.02761

Contact: Mayee Chen, mfchen@stanford.edu

